Advertisement

Optimal Tricuspid Regurgitation Velocity to Screen for Pulmonary Hypertension in Tertiary Referral Centers

      Background

      A mean pulmonary artery pressure >20 mm Hg now defines pulmonary hypertension. We hypothesize that echocardiographic thresholds must be adjusted.

      Research Question

      Should tricuspid regurgitation velocity thresholds to screen for pulmonary hypertension be revised, given the new hemodynamic definition?

      Study Design and Methods

      This multicenter retrospective study included 1,608 patients who underwent both echocardiography and right heart catherization within 4 weeks. The discovery cohort consisted of 1,081 individuals; the validation cohort included 527. Screening criteria for pulmonary hypertension were derived with the use of receiver operating characteristic analysis and the Youden index, assuming equal cost for false-positive and -negative classification. A lower threshold was calculated with the use of a predefined sensitivity: 95%.

      Results

      In the discovery cohort, echocardiographic tricuspid regurgitation velocity had a good discrimination for pulmonary hypertension: area under the curve, 88.4 (95% CI, 85.3-91.5). A 3.4-m/s threshold provided a 78% sensitivity, 87% specificity, and 6.13 positive likelihood ratio to detect pulmonary hypertension; 2.7 m/s had a 95% sensitivity and 0.12 negative likelihood ratio to exclude pulmonary hypertension. In the validation cohort, the discovery threshold of 2.7 m/s provided sensitivity and negative likelihood ratios of 80% and 0.31, respectively. Right cardiac size improved detection of pulmonary hypertension in the lower tricuspid regurgitation velocity groups.

      Interpretation

      Our data support a lower tricuspid regurgitation velocity of approximately 2.7 m/s for screening pulmonary hypertension, with a high sensitivity in tertiary referral centers. Right heart chamber measurements improve the diagnostic yield of echocardiography.

      Graphical Abstract

      Key Words

      Abbreviations:

      AUC (area under the curve), mPAP (mean pulmonary artery pressure), NLR (negative-likelihood ratio), PAWP (pulmonary artery wedge pressure), PH (pulmonary hypertension), PLR (positive-likelihood ratio), RA (right atrial), RAE (right atrial enlargement), RHC (right heart catheterization), ROC (receiver operating curve), RV (right ventricle), RVE (right ventricle enlargement), RVSP (right ventricular systolic pressure), TRV (tricuspid regurgitation velocity), TTE (transthoracic echocardiogram)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoeper M.M.
        • Humbert M.
        • Souza R.
        • et al.
        A global view of pulmonary hypertension.
        Lancet Respir Med. 2016; 4: 306-322
        • Guha A.
        • Amione-Guerra J.
        • Park M.H.
        Epidemiology of pulmonary hypertension in left heart disease.
        Prog Cardiovasc Dis. 2016; 59: 3-10
        • Rich S.
        • McLaughlin V.V.
        • O’Neill W.
        Stenting to reverse left ventricular ischemia due to left main coronary artery compression in primary pulmonary hypertension.
        Chest. 2001; 120: 1412-1415
        • Mesquita S.M.F.
        • Castro C.R.P.
        • Ikari N.M.
        • Oliveira S.A.
        • Lopes A.A.
        Likelihood of left main coronary artery compression based on pulmonary trunk diameter in patients with pulmonary hypertension.
        Am J Med. 2004; 116: 369-374
        • Badesch D.B.
        • Raskob G.E.
        • Elliott C.G.
        • et al.
        Pulmonary arterial hypertension.
        Chest. 2010; 137: 376-387
        • Brown L.M.
        • Chen H.
        • Halpern S.
        • et al.
        Delay in recognition of pulmonary arterial hypertension.
        Chest. 2011; 140: 19-26
        • Rich S.
        Primary pulmonary hypertension: a national prospective study.
        Ann Intern Med. 1987; 107: 216
        • Hoeper M.M.
        • Lee S.H.
        • Voswinckel R.
        • et al.
        Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers.
        J Am Coll Cardiol. 2006; 48: 2546-2552
        • Ahmed I.
        • Nuri M.M.H.
        • Zakariyya A.N.
        • Ahmad S.M.
        • Ahmed M.
        Correlation between doppler echocardiography and right heart catheterization derived pulmonary artery pressures: impact of right atrial pressures.
        J Coll Physicians Surg Pak. 2016; 26: 255-259
        • Rich J.D.
        • Shah S.J.
        • Swamy R.S.
        • Kamp A.
        • Rich S.
        Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension.
        Chest. 2011; 139: 988-993
        • D’Alto M.
        • Romeo E.
        • Argiento P.
        • et al.
        Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension.
        Int J Cardiol. 2013; 168: 4058-4062
        • Fisher M.R.
        • Forfia P.R.
        • Chamera E.
        • et al.
        Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension.
        Am J Respir Crit Care Med. 2009; 179: 615-621
        • Greiner S.
        • Jud A.
        • Aurich M.
        • et al.
        Reliability of noninvasive assessment of systolic pulmonary artery pressure by Doppler echocardiography compared to right heart catheterization: analysis in a large patient population.
        J Am Heart Assoc. 2014; 3: e001103
        • Ni J.-R.
        • Yan P.-J.
        • Liu S.-D.
        • et al.
        Diagnostic accuracy of transthoracic echocardiography for pulmonary hypertension: a systematic review and meta-analysis.
        BMJ Open. 2019; 9e033084
        • Taleb M.
        • Khuder S.
        • Tinkel J.
        • Khouri S.J.
        The diagnostic accuracy of Doppler echocardiography in assessment of pulmonary artery systolic pressure: a meta-analysis.
        Echocardiography. 2013; 30: 258-265
        • Yock P.G.
        • Popp R.L.
        Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation.
        Circulation. 1984; 70: 657-662
        • Zhang R.F.
        • Zhou L.
        • Ma G.F.
        • Shao F.C.
        • Wu X.H.
        • Ying K.J.
        Diagnostic value of transthoracic Doppler echocardiography in pulmonary hypertension: a meta-analysis.
        Am J Hypertens. 2010; 23: 1261-1264
        • Rudski L.G.
        • Lai W.W.
        • Afilalo J.
        • et al.
        Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography.
        J Am Soc Echocardiogr. 2010; 23: 685-713
        • Galiè N.
        • Humbert M.
        • Vachiery J.-L.
        • et al.
        2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS) endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT).
        Eur Respir J. 2015; 46: 903-975
        • Simonneau G.
        • Montani D.
        • Celermajer D.S.
        • et al.
        Haemodynamic definitions and updated clinical classification of pulmonary hypertension.
        Eur Respir J. 2019; 53: 1801913
        • Maron B.A.
        • Hess E.
        • Maddox T.M.
        • et al.
        Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program.
        Circulation. 2016; 133: 1240-1248
        • Montane B.
        • Reznicek E.
        • Li M.
        • Wang X.
        • Heresi G.
        Utilizing echocardiographic data for detection of pulmonary hypertension.
        Am J Respir Crit Care Med. 2020; 201: A3856
        • Kovacs G.
        • Berghold A.
        • Scheidl S.
        • Olschewski H.
        Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review.
        Eur Respir J. 2009; 34: 888-894
        • Heresi G.A.
        • Minai O.A.
        • Tonelli A.R.
        • et al.
        Clinical characterization and survival of patients with borderline elevation in pulmonary artery pressure.
        Pulm Circ. 2013; 3: 916-925
        • Douschan P.
        • Kovacs G.
        • Avian A.
        • et al.
        Mild elevation of pulmonary arterial pressure as a predictor of mortality.
        Am J Respir Crit Care Med. 2018; 197: 509-516
        • Maron B.A.
        • Brittan E.L.
        • Hess E.
        • et al.
        Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study.
        Lancet Respir Med. 2020; 8: 873-884
        • Strange G.
        • Stewart S.
        • Celermajer D.S.
        • et al.
        Threshold of pulmonary hypertension associated with increased mortality.
        J Am Coll Cardiol. 2019; 73: 2660-2672
        • Stamm J.A.
        • Risbano M.G.
        • Mathier M.A.
        Overview of current therapeutic approaches for pulmonary hypertension.
        Pulm Circ. 2011; 1: 138-159
        • Schiess R.
        • Senn O.
        • Fischler M.
        • et al.
        Tobacco smoke: a risk factor for pulmonary arterial hypertension?.
        Chest. 2010; 138: 1086-1092
        • Walter J.E.
        • Heuvelmans M.A.
        • de Jong P.A.
        • et al.
        Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial.
        Lancet Oncol. 2016; 17: 907-916
        • Gall H.
        • Yogeswaran A.
        • Fuge J.
        • et al.
        Validity of echocardiographic tricuspid regurgitation gradient to screen for new definition of pulmonary hypertension.
        E Clinical Medicine. 2021; 34: 100822
        • Amsallem M.
        • Sternbach J.M.
        • Adigopula S.
        • et al.
        Addressing the controversy of estimating pulmonary arterial pressure by echocardiography.
        J Am Soc Echocardiogr. 2016; 29: 93-102
        • Arcasoy S.M.
        • Christie J.D.
        • Ferrari V.A.
        • et al.
        Echocardiographic Assessment of pulmonary hypertension in patients with advanced lung disease.
        Am J Respir Crit Care Med. 2003; 167: 735-740
        • Mori S.
        • Nakatani S.
        • Kanzaki H.
        • et al.
        Patterns of the interventricular septal motion can predict conditions of patients with pulmonary hypertension.
        J Am Soc Echocardiogr. 2008; 21: 386-393
        • Amsallem M.
        • Tedford R.J.
        • Denault A.
        • et al.
        Quantifying the influence of wedge pressure, age, and heart rate on the systolic thresholds for detection of pulmonary hypertension.
        J Am Heart Assoc. 2020; 9: e016265