Inhibiting OX40 Restores Regulatory T-Cell Function and Suppresses Inflammation in Pulmonary Sarcoidosis


      Pulmonary sarcoidosis (PS) is a noncaseating granulomatous disease of unknown origin. Despite conflicting reports, it is considered that the regulatory T (Treg) cells are functionally impaired in PS, but the underlying mechanisms remain unclear. OX40, a pivotal costimulatory molecule, is essential for T-cell functions and memory development, but its impact on Treg cells is ambiguous.

      Research Question

      Does the OX40 pathway influence the suppressive functions of Treg cells in PS?

      Study Design and Methods

      Fifty treatment-naïve patients with PS and 30 healthy control participants were recruited for this study. Polychromatic flow cytometry-based immunologic assays were performed to enumerate effector T helper (Th) cells and Treg cells along with their functions. Using real-time polymerase chain reaction analysis, small interfering RNA, and pharmacologic inhibitors, the impact of OX40 on Treg cell function was investigated.


      We observed enrichment of Th-9 cells perhaps for the first time along with Th-1, Th-17, and Treg cells in patients’ BAL fluid (BALF) compared with peripheral blood. However, Treg cells were observed to be functionally defective at the pathological site. We observed higher expression of OX40 on both T effector (CD4+Foxp3) and Treg (CD4+Foxp3+) cells obtained from the BALF of patients with PS. However, OX40 exerted contrasting impact on these T-cell subsets, enhancing effector T-cell functions (interferon γ, tumor necrosis factor α) while inhibiting Treg cell function (IL-10, transforming growth factor β). OX40 silencing or blocking on Treg cells resulted in restoration of their impaired functions.


      We propose that inhibiting the OX40 pathway may constitute a therapeutic strategy for controlling inflammatory T cells by restoring Treg cell functions in patients with PS.

      Key Words


      BALF (BAL fluid), IFN-γ (interferon γ), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinase), mRNA (messenger RNA), mTOR (mammalian target of rapamycin), NFAT (nuclear factor of activated T cell), NFκB (nuclear factor κ B), PB (peripheral blood), PBMC (peripheral blood mononuclear cell), PS (pulmonary sarcoidosis), siRNA (small interfering RNA), Teff (effector T), TGF-β (transforming growth factor β), Th (T helper), TNF-α (tumor necrosis factor α), Treg (regulatory T)
      To read this article in full you will need to make a payment
      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Valeyre D.
        • Prasse A.
        • Nunes H.
        • Uzunhan Y.
        • Brillet P.Y.
        Müller-Quernheim J. Sarcoidosis.
        Lancet. 2014; 383: 1155-1167
        • Judson M.A.
        The diagnosis of sarcoidosis: attempting to apply rigor to arbitrary and circular reasoning.
        Chest. 2018; 154: 1006-1007
        • Prasse A.
        • Georges C.G.
        • Biller H.
        • et al.
        Th1 cytokine pattern in sarcoidosis is expressed by bronchoalveolar CD4+ and CD8+ T cells.
        Clin Exp Immunol. 2000; 122: 241-248
        • Ten Berge B.
        • Paats M.S.
        • Bergen I.M.
        • et al.
        Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis.
        Rheumatology (Oxford). 2012; 51: 37-46
        • Sweiss N.J.
        • Zhang W.
        • Franek B.S.
        • et al.
        Linkage of type I interferon activity and TNF-alpha levels in serum with sarcoidosis manifestations and ancestry.
        PLoS One. 2011; 6e29126
        • Prior C.
        • Haslam P.L.
        Increased levels of serum interferon-gamma in pulmonary sarcoidosis and relationship with response to corticosteroid therapy.
        Am Rev Respir Dis. 1991; 143: 53-60
        • Mroz R.
        • Korniluk M.
        • Stasiak-Barmuta A.
        • Ossolinska M.
        • Chyczewska E.
        Increased levels of Treg cells in bronchoalveolar lavage fluid and induced sputum of patients with active pulmonary sarcoidosis.
        Eur J Med Res. 2009; 14: 1651-1669
        • Rappl G.
        • Pabst S.
        • Riemann D.
        • et al.
        Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation.
        Clin Immunol. 2011; 140: 71-83
        • Goldfrey W.R.
        • Fagnoni F.F.
        • Harara M.A.
        • Buck D.
        • Engleman E.G.
        Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor.
        J Exp Med. 1994; 180: 757-762
        • Gramaglia I.
        • Weinberg A.D.
        • Lemon M.
        • Croft M.
        OX-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses.
        J Immunol. 1998; 161: 6510-6517
        • Croft M.
        • So T.
        • Duan W.
        • Soroosh P.
        The significance of OX40 and OX40L to T-cell biology and immune disease.
        Immunol Rev. 2009; 229: 173-191
        • Gramaglia I.
        • Jember A.
        • Pippig S.D.
        • Weinberg A.D.
        • Killeen N.
        • Croft M.
        The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion.
        J Immunol. 2000; 165: 3043-3050
        • Ito T.
        • Wang Y.H.
        • Duramad O.
        • et al.
        TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand.
        J Exp Med. 2005; 202: 1213-1223
        • Xiao X.
        • Fan Y.
        • Li J.
        • et al.
        Guidance of super-enhancers in regulation of IL-9 induction and airway inflammation.
        J Exp Med. 2018; 215: 559-574
        • Xiao X.
        • Shi X.
        • Fan Y.
        • et al.
        The costimulatory receptor OX40 inhibits interleukin-17 expression through activation of repressive chromatin remodeling pathways.
        Immunity. 2016; 44: 1271-1283
        • Li J.
        • Li L.
        • Shang X.
        • et al.
        Negative regulation of IL-17 production by OX40/OX40L interaction.
        Cell Immunol. 2008; 253: 31-37
        • Zhang X.
        • Xiao X.
        • Lan P.
        • et al.
        OX40 costimulation inhibits Foxp3 expression and Treg induction via BATF3-dependent and independent mechanisms.
        Cell Rep. 2018; 24: 607-618
        • Piconese S.
        • Pittoni P.
        • Burocchi A.
        • et al.
        A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2.
        Eur J Immunol. 2010; 40: 2902-2913
        • Kumar P.
        • Marinelarena A.
        • Raghunathan D.
        • et al.
        Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation.
        Cell Mol Immunol. 2019; 16: 138-153
        • Marinelarena A.
        • Bhattacharya P.
        • Kumar P.
        • Maker A.V.
        • Prabhakar B.S.
        Identification of a novel OX40L(+) dendritic cell subset that selectively expands regulatory T cells.
        Sci Rep. 2018; 8: 14940
        • Kitamura N.
        • Murata S.
        • Ueki T.
        • et al.
        OX40 costimulation can abrogate Foxp3+ regulatory T cell-mediated suppression of antitumor immunity.
        Int J Cancer. 2009; 125: 630-638
        • Vu M.D.
        • Xiao X.
        • Gao W.
        • et al.
        OX40 costimulation turns off Foxp3+ Tregs.
        Blood. 2007; 110: 2501-2510
        • Voo K.S.
        • Bover L.
        • Harline M.L.
        • et al.
        Antibodies targeting human OX40 expand effector T cells and block inducible and natural regulatory T cell function.
        J Immunol. 2013; 191: 3641-3650
        • Chowdhury K.
        • Kumar U.
        • Das S.
        • et al.
        Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 cells in rheumatoid arthritis.
        Arthritis Res Ther. 2018; 20: 18
        • Chakraborty S.
        • Kubatzky K.F.
        • Mitra D.K.
        An update on interleukin-9: from its cellular source and signal transduction to its role in immunopathogenesis.
        Int J Mol Sci. 2019; 20 (pii:E2113)
        • Huang H.
        • Lu Z.
        • Jiang C.
        • Liu J.
        • Wang Y.
        • Xu Z.
        Imbalance between Th17 and regulatory T-cells in sarcoidosis.
        Int J Mol Sci. 2013; 14: 21463-21473
        • Takatori H.
        • Kawashima H.
        • Matsuki A.
        • et al.
        Helios enhances Treg cell function in cooperation with FoxP3.
        Arthritis Rheumatol. 2015; 67: 1491-1502
        • So T.
        • Nagashima H.
        • Ishii N.
        TNF receptor-associated factor (TRAF) signaling network in CD4(+) T-lymphocytes.
        Tohoku J Exp Med. 2015; 236: 139-154
        • So T.
        • Soroosh P.
        • Eun S.-Y.
        • Altman A.
        • Croft M.
        Antigen-independent signalosome of CARMA1, PKCθ, and TNF receptor-associated factor 2 (TRAF2) determines NF-κB signaling in T cells.
        Proc Natl Acad Sci U S A. 2011; 108: 2903-2908
        • So T.
        • Choi H.
        • Croft M.
        OX40 complexes with phosphoinositide 3-kinase and protein kinase B (PKB) to augment TCR-dependent PKB signaling.
        J Immunol. 2011; 186: 3547-3555
        • Huang L.
        • Wang M.
        • Yan Y.
        • et al.
        OX40L induces helper T cell differentiation during cell immunity of asthma through PI3K/AKT and P38 MAPK signaling pathway.
        J Transl Med. 2018; 16: 74
        • Matsumura Y.
        • Hori T.
        • Kawamata S.
        • Imura A.
        • Uchiyama T.
        Intracellular signaling of gp34, the OX40 ligand: induction of c-jun and c-fos mRNA expression through gp34 upon binding of its receptor, OX40.
        J Immunol. 1999; 163: 3007-3011
        • Jamilloux Y.
        • Cohen-Aubart F.
        • Chapelon-Abric C.
        • et al.
        Efficacy and safety of tumor necrosis factor antagonists in refractory sarcoidosis: a multicenter study of 132 patients.
        Semin Arthritis Rheum. 2017; 47: 288-294
        • Singh A.
        • Dey A.B.
        • Mohan A.
        • Sharma P.K.
        • Mitra D.K.
        Foxp3+ regulatory T cells among tuberculosis patients: impact on prognosis and restoration of antigen specific IFN-γ producing T cells.
        PLoS One. 2012; 7e44728
        • Ehrlich A.
        • Castilho T.M.
        • Goldsmith-Pestana K.
        • et al.
        The immunotherapeutic role of regulatory T cells in Leishmania (Viannia) panamensis infection.
        J Immunol. 2014; 193: 2961-2970
        • Sadhu S.
        • Khaitan B.K.
        • Joshi B.
        • Sengupta U.
        • Nautiyal A.K.
        • Mitra D.K.
        Reciprocity between regulatory T cells and Th17 cells: relevance to polarized immunity in leprosy.
        PLoS Negl Trop Dis. 2016; 10e0004338
        • Sun G.
        • Sun X.
        • Li W.
        • et al.
        Critical role of OX40 in the expansion and survival of CD4 T-cell-derived double-negative T cells.
        Cell Death Dis. 2018; 9: 616
        • Xiao X.
        • Balasubramanian S.
        • Liu W.
        • et al.
        OX40 signaling favors the induction of T(H)9 cells and airway inflammation.
        Nat Immunol. 2012; 13: 981-990
        • Linke M.
        • Pham H.T.
        • Katholnig K.
        • et al.
        Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression.
        Nat Immunol. 2017; 18: 293-302
        • Manzia T.M.
        • Bellini M.I.
        • Corona L.
        • et al.
        Successful treatment of systemic de novo sarcoidosis with cyclosporine discontinuation and provision of Rapamune after liver transplantation.
        Transpl Int. 2011; 24: e69-e70
        • Janssen W.J.
        • Barthel L.
        • Muldrow A.
        • et al.
        Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury.
        Am J Respir Crit Care Med. 2011; 184: 547-560