Protein Biomarkers for COPD Outcomes

Published:January 09, 2021DOI:
      COPD is a clinically heterogeneous syndrome characterized by injury to airways, airspaces, and lung vasculature and usually caused by tobacco smoke and/or air pollution exposure. COPD is also independently associated with nonpulmonary comorbidities (eg, cardiovascular disease) and malignancies (eg, GI, bladder), suggesting a role for systemic injury. Since not all those with exposure develop COPD, there has been a search for plasma and lung biomarkers that confer increased cross-sectional and longitudinal risk. This search typically focuses on clinically relevant COPD outcomes such as FEV1, FEV1 decline, CT measurements of emphysema, or exacerbation frequency. The rapid advances in omics technology and the molecular phenotyping of COPD cohorts now permit large-scale evaluation of genetic, transcriptomic, proteomic, and metabolic biomarkers. This review focuses on protein biomarkers associated with clinically relevant COPD outcomes. The prototypic COPD protein biomarker is alpha-1 antitrypsin; however, this biomarker only accounts for 1% to 5% of COPD. This article reviews and summarizes the evidence for other validated biomarkers for each COPD outcome, and discusses their advantages, weaknesses, and required regulatory steps to move the biomarker from the bench into clinic. Although we highlight the emergence of many novel biomarkers (eg, fibrinogen, soluble receptor for advanced glycation, surfactant protein D, club cell secretory protein), there is increasing evidence that individual biomarkers only explain a fraction of the increased COPD risk and that multiple biomarker panels are needed to completely explain clinical variation and risk in individuals and populations.

      Key Words


      AAT (alpha-1 antitrypsin), COPDGene (COPD Genetic Epidemiology), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points), FDA (Food and Drug Administration), MESA-Lung study (Multi-Ethnic Study of Atherosclerosis), SPIROMICS (SubPopulations and InteRmediate Outcome Measures In COPD Study), sRAGE (soluble receptor for advanced glycation)
      To read this article in full you will need to make a payment
      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Han M.K.
        • Martinez C.H.
        • Au D.H.
        • et al.
        Meeting the challenge of COPD care delivery in the USA: a multiprovider perspective.
        Lancet Respir Med. 2016; 4: 473-526
        • Regan E.A.
        • Hersh C.P.
        • Castaldi P.J.
        • et al.
        Omics and the search for blood biomarkers in chronic obstructive pulmonary disease. Insights from COPDGene.
        Am J Respir Cell Mol Biol. 2019; 61: 143-149
        • Wedzicha J.A.
        • Brill S.E.
        • Allinson J.P.
        • Donaldson G.C.
        Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease.
        BMC Med. 2013; 11: 181
        • Wedzicha J.A.
        • Rabe K.F.
        • Martinez F.J.
        • et al.
        Efficacy of roflumilast in the COPD frequent exacerbator phenotype.
        Chest. 2013; 143: 1302-1311
        • FDA-NIH Biomarker Working Group
        BEST (Biomarkers, EndpointS, and other Tools) Resource.
        Silver Spring, MD2016
        • Hobbs B.D.
        • Hersh C.P.
        Integrative genomics of chronic obstructive pulmonary disease.
        Biochem Biophys Res Commun. 2014; 452: 276-286
        • Sakornsakolpat P.
        • Prokopenko D.
        • Lamontagne M.
        • et al.
        Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations.
        Nat Genet. 2019; 51: 494-505
        • Bosse Y.
        • Lamontagne M.
        • Gaudreault N.
        • et al.
        Early-onset emphysema in a large French-Canadian family: a genetic investigation.
        Lancet Respir Med. 2019; 7: 427-436
        • Barnes P.J.
        Reduced histone deacetylase in COPD: clinical implications.
        Chest. 2006; 129: 151-155
        • Lam H.C.
        • Cloonan S.M.
        • Bhashyam A.R.
        • et al.
        Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction.
        J Clin Invest. 2013; 123: 5212-5230
        • Vucic E.A.
        • Chari R.
        • Thu K.L.
        • et al.
        DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways.
        Am J Respir Cell Mol Biol. 2014; 50: 912-922
        • Bowler R.P.
        • Wendt C.H.
        • Fessler M.B.
        • et al.
        New strategies and challenges in lung proteomics and metabolomics. An Official American Thoracic Society Workshop Report.
        Ann Am Thorac Soc. 2017; 14: 1721-1743
        • Cheng D.T.
        • Kim D.K.
        • Cockayne D.A.
        • et al.
        Systemic soluble receptor for advanced glycation endproducts is a biomarker of emphysema and associated with AGER genetic variants in patients with chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2013; 188: 948-957
        • Cruickshank-Quinn C.I.
        • Jacobson S.
        • Hughes G.
        • et al.
        Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD.
        Sci Rep. 2018; 8: 17132
        • Martinez F.J.
        • Erb-Downward J.R.
        • Huffnagle G.B.
        Significance of the microbiome in chronic obstructive pulmonary disease.
        Ann Am Thorac Soc. 2013; 10: S170-S179
        • Leitao Filho F.S.
        • Alotaibi N.M.
        • Ngan D.
        • et al.
        Sputum microbiome is associated with 1-year mortality after chronic obstructive pulmonary disease hospitalizations.
        Am J Respir Crit Care Med. 2019; 199: 1205-1213
        • Celli B.R.
        • Cote C.G.
        • Marin J.M.
        • et al.
        The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease.
        N Engl J Med. 2004; 350: 1005-1012
        • Meguro M.
        • Barley E.A.
        • Spencer S.
        • Jones P.W.
        Development and validation of an improved, COPD-specific version of the St. George Respiratory Questionnaire.
        Chest. 2007; 132: 456-463
        • Troosters T.
        • Vilaro J.
        • Rabinovich R.
        • et al.
        Physiological responses to the 6-min walk test in patients with chronic obstructive pulmonary disease.
        Eur Respir J. 2002; 20: 564-569
        • Schroeder J.D.
        • McKenzie A.S.
        • Zach J.A.
        • et al.
        Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease.
        AJR Am J Roentgenol. 2013; 201: W460-W470
        • Celli B.R.
        • MacNee W.
        • Force A.E.T.
        Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper.
        Eur Respir J. 2004; 23: 932-946
        • Laurell C.B.
        • Eriksson S.
        Hypo-alpha-1-antitrypsinemia [in German].
        Verh Dtsch Ges Inn Med. 1964; 70: 537-539
        • DeMeo D.L.
        • Silverman E.K.
        Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk.
        Thorax. 2004; 59: 259-264
        • Shrine N.
        • Guyatt A.L.
        • Erzurumluoglu A.M.
        • et al.
        New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries.
        Nat Genet. 2019; 51: 481-493
        • Agusti A.
        The path to personalised medicine in COPD.
        Thorax. 2014; 69: 857-864
        • Kan M.
        • Shumyatcher M.
        • Himes B.E.
        Using omics approaches to understand pulmonary diseases.
        Respir Res. 2017; 18: 149
        • Stockley R.A.
        • Halpin D.M.G.
        • Celli B.R.
        • Singh D.
        Chronic obstructive pulmonary disease biomarkers and their interpretation.
        Am J Respir Crit Care Med. 2019; 199: 1195-1204
        • Raffield L.M.
        • Dang H.
        • Pratte K.A.
        • et al.
        Comparison of proteomic assessment methods in multiple cohort studies.
        Proteomics. 2020; 20e1900278
        • Candia J.
        • Cheung F.
        • Kotliarov Y.
        • et al.
        Assessment of variability in the SOMAscan assay.
        Sci Rep. 2017; 7: 14248
        • Zarei S.
        • Mirtar A.
        • Morrow J.D.
        • Castaldi P.J.
        • Belloni P.
        • Hersh C.P.
        Subtyping chronic obstructive pulmonary disease using peripheral blood proteomics.
        Chronic Obstr Pulm Dis. 2017; 4: 97-108
        • Oelsner E.C.
        • Balte P.P.
        • Grams M.E.
        • et al.
        Albuminuria, lung function decline, and risk of incident chronic obstructive pulmonary disease. The NHLBI Pooled Cohorts Study.
        Am J Respir Crit Care Med. 2019; 199: 321-332
        • Ropcke S.
        • Holz O.
        • Lauer G.
        • et al.
        Repeatability of and relationship between potential COPD biomarkers in bronchoalveolar lavage, bronchial biopsies, serum, and induced sputum.
        PLoS One. 2012; 7e46207
        • Leiten E.O.
        • Eagan T.M.L.
        • Martinsen E.M.H.
        • et al.
        Complications and discomfort after research bronchoscopy in the MicroCOPD study.
        BMJ Open Respir Res. 2020; 7e000449
        • Baraniuk J.N.
        • Casado B.
        • Pannell L.K.
        • et al.
        Protein networks in induced sputum from smokers and COPD patients.
        Int J Chron Obstruct Pulmon Dis. 2015; 10: 1957-1975
        • Franciosi L.
        • Govorukhina N.
        • Fusetti F.
        • et al.
        Proteomic analysis of human epithelial lining fluid by microfluidics-based nanoLC-MS/MS: a feasibility study.
        Electrophoresis. 2013; 34: 2683-2694
        • Lee E.J.
        • In K.H.
        • Kim J.H.
        • et al.
        Proteomic analysis in lung tissue of smokers and COPD patients.
        Chest. 2009; 135: 344-352
        • Steiling K.
        • Kadar A.Y.
        • Bergerat A.
        • et al.
        Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers.
        PLoS One. 2009; 4: e5043
        • Titz B.
        • Sewer A.
        • Schneider T.
        • et al.
        Alterations in the sputum proteome and transcriptome in smokers and early-stage COPD subjects.
        J Proteomics. 2015; 128: 306-320
        • Nicholas B.L.
        • Skipp P.
        • Barton S.
        • et al.
        Identification of lipocalin and apolipoprotein A1 as biomarkers of chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2010; 181: 1049-1060
        • Verrills N.M.
        • Irwin J.A.
        • He X.Y.
        • et al.
        Identification of novel diagnostic biomarkers for asthma and chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2011; 183: 1633-1643
        • Pinto-Plata V.
        • Toso J.
        • Lee K.
        • et al.
        Profiling serum biomarkers in patients with COPD: associations with clinical parameters.
        Thorax. 2007; 62: 595-601
        • Walter R.E.
        • Wilk J.B.
        • Larson M.G.
        • et al.
        Systemic inflammation and COPD: the Framingham Heart Study.
        Chest. 2008; 133: 19-25
        • Dickens J.A.
        • Miller B.E.
        • Edwards L.D.
        • et al.
        COPD association and repeatability of blood biomarkers in the ECLIPSE cohort.
        Respir Res. 2011; 12: 146
        • Kohler M.
        • Sandberg A.
        • Kjellqvist S.
        • et al.
        Gender differences in the bronchoalveolar lavage cell proteome of patients with chronic obstructive pulmonary disease.
        J Allergy Clin Immunol. 2013; 131: 743-751
        • Merali S.
        • Barrero C.A.
        • Bowler R.P.
        • et al.
        Analysis of the plasma proteome in COPD: novel low abundance proteins reflect the severity of lung remodeling.
        COPD. 2014; 11: 177-189
        • Zemans R.L.
        • Jacobson S.
        • Keene J.
        • et al.
        Multiple biomarkers predict disease severity, progression and mortality in COPD.
        Respir Res. 2017; 18: 117
        • Bradford E.
        • Jacobson S.
        • Varasteh J.
        • et al.
        The value of blood cytokines and chemokines in assessing COPD.
        Respir Res. 2017; 18: 180
        • Ngo D.
        • Peterson B.
        • Keyes M.
        • Gao Y.
        • et al.
        The proteomic profile associated with lung function and COPD in the Jackson Heart Study.
        Am J Respir Crit Care Med. 2020; 201: A6136
        • Carolan B.J.
        • Hughes G.
        • Morrow J.
        • et al.
        The association of plasma biomarkers with computed tomography-assessed emphysema phenotypes.
        Respir Res. 2014; 15: 127
        • Coxson H.O.
        • Dirksen A.
        • Edwards L.D.
        • et al.
        The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study.
        Lancet Respir Med. 2013; 1: 129-136
        • Bozinovski S.
        • Hutchinson A.
        • Thompson M.
        • et al.
        Serum amyloid a is a biomarker of acute exacerbations of chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2008; 177: 269-278
        • Keene J.D.
        • Jacobson S.
        • Kechris K.
        • et al.
        Biomarkers predictive of exacerbations in the SPIROMICS and COPDGene cohorts.
        Am J Respir Crit Care Med. 2017; 195: 473-481
        • Vestbo J.
        • Anderson W.
        • Coxson H.O.
        • et al.
        Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE).
        Eur Respir J. 2008; 31: 869-873
        • Regan E.A.
        • Hokanson J.E.
        • Murphy J.R.
        • et al.
        Genetic epidemiology of COPD (COPDGene) study design.
        COPD. 2010; 7: 32-43
        • Jones P.W.
        • Rames A.D.
        Tesra (treatment Of Emphysema With A Selective Retinoid Agonist) Study Results.
        Am J Respir Crit Care Med. 2011; 183 (A641): 2011
        • Rennard S.I.
        The Promise of Observational Studies (ECLIPSE, SPIROMICS, and COPDGene) in achieving the goal of personalized treatment of chronic obstructive pulmonary disease.
        Semin Respir Crit Care Med. 2015; 36: 478-490
        • Beiko T.
        • Janech M.G.
        • Alekseyenko A.V.
        • et al.
        Serum proteins associated with emphysema progression in severe alpha-1 antitrypsin deficiency.
        Chronic Obstr Pulm Dis. 2017; 4: 204-216
        • Strange C.
        • Senior R.M.
        • Sciurba F.
        • et al.
        Rationale and design of the genomic research in alpha-1 antitrypsin deficiency and sarcoidosis study. Alpha-1 protocol.
        Ann Am Thorac Soc. 2015; 12: 1551-1560
        • Tuck M.K.
        • Chan D.W.
        • Chia D.
        • et al.
        Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group.
        J Proteome Res. 2009; 8: 113-117
        • Geyer P.E.
        • Voytik E.
        • Treit P.V.
        • et al.
        Plasma proteome profiling to detect and avoid sample-related biases in biomarker studies.
        EMBO Mol Med. 2019; 11e10427
      1. Rikkert LG, Coumans FAW, Hau CM, Terstappen L, Nieuwland R. Platelet removal by single-step centrifugation [published online ahead of print June 17, 2020]. Platelets.

        • Depner C.M.
        • Melanson E.L.
        • McHill A.W.
        • Wright Jr., K.P.
        Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.
        Proc Natl Acad Sci U S A. 2018; 115: E5390-E5399
        • de Torres J.P.
        • Casanova C.
        • Pinto-Plata V.
        • et al.
        Gender differences in plasma biomarker levels in a cohort of COPD patients: a pilot study.
        PLoS One. 2011; 6e16021
        • Jammes Y.
        • Steinberg J.G.
        • Ba A.
        • Delliaux S.
        • Bregeon F.
        Enhanced exercise-induced plasma cytokine response and oxidative stress in COPD patients depend on blood oxygenation.
        Clin Physiol Funct Imaging. 2008; 28: 182-188
        • Agusti A.
        • Hedner J.
        • Marin J.M.
        • Barbe F.
        • Cazzola M.
        • Rennard S.
        Night-time symptoms: a forgotten dimension of COPD.
        Eur Respir Rev. 2011; 20: 183-194
        • Miller B.E.
        • Tal-Singer R.
        • Rennard S.I.
        • et al.
        Plasma fibrinogen qualification as a drug development tool in chronic obstructive pulmonary disease. Perspective of the Chronic Obstructive Pulmonary Disease Biomarker Qualification Consortium.
        Am J Respir Crit Care Med. 2016; 193: 607-613
        • Jones P.W.
        St. George's Respiratory Questionnaire: MCID.
        COPD. 2005; 2: 75-79
        • Campbell E.J.
        • Campbell M.A.
        • Boukedes S.S.
        • Owen C.A.
        Quantum proteolysis by neutrophils: implications for pulmonary emphysema in alpha 1-antitrypsin deficiency.
        J Clin Invest. 1999; 104: 337-344
        • Ma S.
        • Lin Y.Y.
        • Turino G.M.
        Measurements of desmosine and isodesmosine by mass spectrometry in COPD.
        Chest. 2007; 131: 1363-1371
        • Sukkar M.B.
        • Ullah M.A.
        • Gan W.J.
        • et al.
        RAGE: a new frontier in chronic airways disease.
        Br J Pharmacol. 2012; 167: 1161-1176
        • Kearon C.
        • de Wit K.
        • Parpia S.
        • et al.
        Diagnosis of pulmonary embolism with d-Dimer adjusted to clinical probability.
        N Engl J Med. 2019; 381: 2125-2134
        • Jankowich M.D.
        • Wu W.C.
        • Choudhary G.
        Association of elevated plasma endothelin-1 levels with pulmonary hypertension, mortality, and heart failure in african american individuals: the Jackson Heart Study.
        JAMA Cardiol. 2016; 1: 461-469
        • Sun W.
        • Kechris K.
        • Jacobson S.
        • et al.
        Common genetic polymorphisms influence blood biomarker measurements in COPD.
        PLoS Genet. 2016; 12e1006011
        • Sun B.B.
        • Maranville J.C.
        • Peters J.E.
        • et al.
        Genomic atlas of the human plasma proteome.
        Nature. 2018; 558: 73-79
        • Mastej E.
        • Gillenwater L.
        • Zhuang Y.
        • Pratte K.A.
        • Bowler R.P.
        • Kechris K.
        Identifying protein-metabolite networks associated with COPD phenotypes.
        Metabolites. 2020; 10: 124