A Cluster Analysis of Bronchiectasis Patients Based on the Airway Immune Profile

Published:November 17, 2020DOI:


      Clinical heterogeneity in bronchiectasis remains a challenge for improving the appropriate targeting of therapies and patient management. Antimicrobial peptides (AMPs) have been linked to disease severity and phenotype.

      Research Question

      Can we identify clusters of patients based on the levels of AMPs, airway inflammation, tissue remodeling, and tissue damage to establish their relationship with disease severity and clinical outcomes?

      Study Design and Methods

      A prospective cohort of 128 stable patients with bronchiectasis were recruited across three centers in three different countries (Spain, Scotland, and Italy). A two-step cluster strategy was used to stratify patients according to levels of lactoferrin, lysozyme, LL-37, and secretory leukocyte protease inhibitor in sputum. Measurements of inflammation (IL-8, tumor growth factor β, and IL-6), tissue remodeling and damage (glycosaminoglycan, matrix metallopeptidase 9, neutrophil elastase, and total and bacterial DNA), and neutrophil chemotaxis were assessed.


      Three clusters of patients were defined according to distinct airway profiles of AMPs. They represented groups of patients with gradually distinct airway infection and disease severity. Each cluster was associated with an airway profile of inflammation, tissue remodeling, and tissue damage. The relationships between soluble mediators also were distinct between clusters. This analysis allowed the identification of the cluster with the most deregulated local innate immune response. During follow-up, each cluster showed different risk of three or more exacerbations occurring (P = .03) and different times to first exacerbations (P = .03).


      Bronchiectasis patients can be stratified in different clusters according to profiles of airway AMPs, inflammation, tissue remodeling, and tissue damage. The combination of these immunologic variables shows a relationship with disease severity and future risk of exacerbations.

      Key Words


      AMP (antimicrobial peptide), GAG (glycosaminoglycan), IQR (interquartile range), SLPI (secretory leukocyte protease inhibitor), TGF-β (tumor growth factor β)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Chalmers J.D.
        • Aliberti S.
        • Blasi F.
        Management of bronchiectasis in adults.
        Eur Respir J. 2015; 45: 1446-1462
        • Aliberti S.
        • Lonni S.
        • Dore S.
        • et al.
        Clinical phenotypes in adult patients with bronchiectasis.
        Eur Respir J. 2016; 47: 1113-1122
        • Guan W.J.
        • Jiang M.
        • Gao Y.H.
        • et al.
        Unsupervised learning technique identifies bronchiectasis phenotypes with distinct clinical characteristics.
        Int J Tuberc Lung Dis. 2016; 20: 402-410
        • King P.T.
        The role of the immune response in the pathogenesis of bronchiectasis.
        Biomed Res Int. 2018; 2018: 68026
        • Peters B.M.
        • Shirtliff M.E.
        • Jabra-Rizk M.A.
        Antimicrobial peptides: primeval molecules or future drugs?.
        PLoS Pathog. 2010; 6e1001067
        • Fuschillo S.
        • De Felice A.
        • Balzano G.
        Mucosal inflammation in idiopathic bronchiectasis: cellular and molecular mechanisms.
        Eur Respir J. 2008; 31: 396-406
        • Dean S.N.
        • Bishop B.M.
        • van Hoek M.L.
        Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37.
        Front Microbiol. 2011; 2: 128
        • Vos J.B.
        • Van Sterkenburg M.A.
        • Rabe K.F.
        • Schalkwijk J.
        • Hiemstra P.S.
        • Datson N.A.
        Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense.
        Physiol Genomics. 2005; 21: 324-336
        • Cole A.M.
        • Liao H.-I.
        • Stuchlik O.
        • Tilan J.
        • Pohl J.
        • Ganz T.
        Cationic polypeptides are required for antibacterial activity of human airway fluid.
        J Immunol. 2002; 169: 6985-6991
        • Sibila O.
        • Perea L.
        • Cantó E.
        • et al.
        Antimicrobial peptides, disease severity and exacerbations in bronchiectasis.
        Thorax. 2019; 74: 835-842
        • Persson L.J.
        • Aanerud M.
        • Hardie J.A.
        • et al.
        Antimicrobial peptide levels are linked to airway inflammation, bacterial colonisation and exacerbations in chronic obstructive pulmonary disease.
        Eur Respir J. 2017; 49: 1601328
        • Martínez-García M.Á.
        • Sánchez C.P.
        • Moreno R.M.G.
        The double-edged sword of neutrophilic inflammation in bronchiectasis.
        Eur Respir J. 2015; 46: 898-900
        • Wigén J.
        • Elowsson-Rendin L.
        • Karlsson L.
        • Tykesson E.
        • Westergren-Thorsson G.
        Glycosaminoglycans: a link between development and regeneration in the lung.
        Stem Cells Dev. 2019; 28: 823-832
        • Andersson E.
        • Rydengård V.
        • Sonesson A.
        • Mörgelin M.
        • Björck L.
        • Schmidtchen A.
        Antimicrobial activities of heparin-binding peptides.
        Eur J Biochem. 2004; 271: 1219-1226
        • Linhardt R.J.
        • Toida T.
        Role of glycosaminoglycans in cellular communication.
        Acc Chem Res. 2004; 37: 431-438
        • Kuschen G.S.V.
        • Coulin F.
        • Power C.A.
        • et al.
        Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses.
        Biochemistry. 1999; 38: 12959-12968
        • Bafadhel M.
        • McKenna S.
        • Terry S.
        • et al.
        Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers.
        Am J Respir Crit Care Med. 2011; 184: 662-671
        • Ghebre M.A.
        • Pang P.H.
        • Diver S.
        • et al.
        Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles.
        J Allergy Clin Immunol. 2018; 141: 2027-2036.e12
        • Ghebre M.A.
        • Bafadhel M.
        • Desai D.
        • et al.
        Biological clustering supports both “Dutch” and “British” hypotheses of asthma and chronic obstructive pulmonary disease.
        J Allergy Clin Immunol. 2015; 135: 63-72.e10
        • Sibila O.
        • Suarez-Cuartin G.
        • Rodrigo-Troyano A.
        • et al.
        Secreted mucins and airway bacterial colonization in non-CF bronchiectasis.
        Respirology. 2015; 20: 1082-1088
        • Chalmers J.D.
        • Moffitt K.L.
        • Suarez-Cuartin G.
        • et al.
        Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis.
        Am J Respir Crit Care Med. 2017; 195: 1384-1393
        • Taiyun Wei M.
        • Taiyun Wei cre A.
        • Simko aut V.
        • et al.
        Package “corrplot” title visualization of a correlation matrix.
        2017 ( Accessed November 5, 2019.)
        • Chalmers J.D.
        • Aliberti S.
        • Filonenko A.
        • et al.
        Characterization of the “frequent exacerbator phenotype” in bronchiectasis.
        Am J Respir Crit Care Med. 2018; 197: 1410-1420
        • Rytilä P.
        • Rehn T.
        • Ilumets H.
        • et al.
        Increased oxidative stress in asymptomatic current chronic smokers and GOLD stage 0 COPD.
        Resp Res. 2006; 7: 69
        • Cole P.J.
        Inflammation: a two-edged sword—the model of bronchiectasis.
        Eur J Respir Dis. 1986; 69: 6-15
        • Finch S.
        • McDonnell M.J.
        • Abo-Leyah H.
        • Aliberti S.
        • Chalmers J.D.
        A comprehensive analysis of the impact of pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis.
        Ann Am Thorac Soc. 2015; 12: 1602-1611
        • Sibila O.
        • Laserna E.
        • Shoemark A.
        • et al.
        Airway bacterial load and inhaled antibiotic response in bronchiectasis.
        Am J Respir Crit Care Med. 2019; 200: 33-41
        • Woo T.E.
        • Lim R.
        • Surette M.G.
        • et al.
        Epidemiology and natural history of Pseudomonas aeruginosa airway infections in non-cystic fibrosis bronchiectasis.
        ERJ Open Res. 2018; 4: 00162-2017
        • Woo T.E.
        • Duong J.
        • Jervis N.M.
        • Rabin H.R.
        • Parkins M.D.
        • Storey D.G.
        Virulence adaptations of Pseudomonas aeruginosa isolated from patients with non-cystic fibrosis bronchiectasis.
        Microbiology (U K). 2016; 162: 2126-2135
        • Workentine M.L.
        • Sibley C.D.
        • Glezerson B.
        • et al.
        Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient.
        PLoS One. 2013; 8e60225
        • Kai-Larsen Y.
        • Agerberth B.
        The role of the multifunctional peptide LL-37 in host defense.
        Front Biosci. 2008; 13: 3760-3767
        • Johansson J.
        • Gudmundsson G.H.
        • Rottenberg M.E.
        • Berndt K.D.
        • Agerberth B.
        Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37.
        J Biol Chem. 1998; 273: 3718-3724
        • Lau Y.E.
        • Bowdish D.M.E.
        • Cosseau C.
        • Hancock R.E.W.
        • Davidson D.J.
        Apoptosis of airway epithelial cells: human serum sensitive induction by the cathelicidin LL-37.
        Am J Respir Cell Mol Biol. 2006; 34: 399-409
        • Watt A.P.
        • Brown V.
        • Courtney J.
        • et al.
        Neutrophil apoptosis, proinflammatory mediators and cell counts in bronchiectasis.
        Thorax. 2004; 59: 231-236
        • Bedi P.
        • Davidson D.J.
        • McHugh B.J.
        • Rossi A.G.
        • Hill A.T.
        Blood neutrophils are reprogrammed in bronchiectasis.
        Am J Respir Crit Care Med. 2018; 198: 880-890
        • Hogg J.C.
        • Senior R.M.
        Chronic obstructive pulmonary disease - part 2: pathology and biochemistry of emphysema.
        Thorax. 2002; 57: 830-834
        • Passi A.
        • Negrini D.
        • Albertini R.
        • Miserocchi G.
        • De Luca G.
        The sensitivity of versican from rabbit lung to gelatinase A (MMP-2) and B (MMP-9) and its involvement in the development of hydraulic lung edema.
        FEBS Lett. 1999; 456: 93-96
        • Singanayagam A.
        • Glanville N.
        • Girkin J.L.
        • et al.
        Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations.
        Nat Commun. 2018; 9: 1-16
        • Singanayagam A.
        • Glanville N.
        • Cuthbertson L.
        • et al.
        Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease.
        Sci Transl Med. 2019; 11
        • Chalmers J.D.
        • McHugh B.J.
        • Docherty C.
        • Govan J.R.W.
        • Hill A.T.
        Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis.
        Thorax. 2013; 68: 39-47
        • Herr C.
        • Beisswenger C.
        • Hess C.
        • et al.
        Suppression of pulmonary innate host defence in smokers.
        Thorax. 2009; 64: 144-149