Ansa Cervicalis Stimulation

A New Direction in Neurostimulation for OSA
Published:October 13, 2020DOI:


      Hypoglossal nerve stimulation (HNS) is an alternative treatment option for patients with OSA unable to tolerate positive airway pressure but implant criteria limit treatment candidacy. Previous research indicates that caudal tracheal traction plays an important role in stabilizing upper airway patency.

      Research Question

      Does contraction of the sternothyroid muscle with ansa cervicalis stimulation (ACS), which pulls the pharynx caudally via thyroid cartilage insertions, increase maximum inspiratory airflow (VImax)?

      Study Design and Methods

      Hook-wire percutaneous electrodes were used to stimulate the medial branch of the right hypoglossal nerve and right branch of the ansa cervicalis innervating the sternothyroid muscle during propofol sedation. VImax was assessed during flow-limited inspiration with a pneumotachometer.


      Eight participants with OSA were studied using ACS with and without HNS. Compared with baseline, the mean VImax increase with isolated ACS was 298%, or 473 mL/s (95% CI, 407-539). Isolated HNS increased mean VImax from baseline by 285%, or 260 mL/s (95% CI, 216-303). Adding ACS to HNS during flow-limited inspiration increased mean VImax by 151%, or 205 mL/s (95% CI, 174-236) over isolated HNS. Stimulation was significantly associated with increase in VImax in both experiments (P < .001).


      ACS independently increased VImax during propofol sedation and drove further increases in VImax when combined with HNS. The branch of the ansa cervicalis innervating the sternothyroid muscle is easily accessed. Confirmation of the ansa cervicalis as a viable neurostimulation target may enable caudal pharyngeal traction as a novel respiratory neurostimulation strategy for treating OSA.

      Key Words


      ACS (ansa cervicalis neurostimulation), BIS (bispectral index score), DISE (drug-induced sleep endoscopy), HNS (hypoglossal nerve stimulation), RNS (respiratory neurostimulation), VImax (maximum inspiratory flow)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Benjafield A.V.
        • Ayas N.T.
        • Eastwood P.R.
        • et al.
        Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis.
        Lancet Respir Med. 2019; 7: 687-698
        • Yaffe K.
        • Laffan A.M.
        • Harrison S.L.
        • et al.
        Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women.
        JAMA. 2011; 306: 613-619
        • Somers V.K.
        • White D.P.
        • Amin R.
        • et al.
        Sleep apnea and cardiovascular disease. An American Heart Association/American College of Cardiology Foundation scientific statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing.
        J Am Coll Cardiol. 2008; 52: 686-717
      1. Peppard PE, Szklo-Coxe M, Hla KM, Young T. Longitudinal association of sleep-related breathing disorder and depression. Arch Intern Med. 2006;166(16):1709-1715.

      2. Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005;53(19):2034-2041.

      3. Gottlieb DJ, Yenokyan G, Newman AB, et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the Sleep Heart Health Study. Circulation. 2010;122(4):352-360.

        • Young T.
        • Finn L.
        • Peppard P.E.
        • et al.
        Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort.
        Sleep. 2008; 31: 1071-1078
        • Marin J.M.
        • Carrizo S.J.
        • Vicente E.
        • Agusti A.G.N.
        Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study.
        Lancet. 2005; 365: 1046-1053
        • Kushida C.A.
        • Nichols D.A.
        • Holmes T.H.
        • et al.
        Effects of continuous positive airway pressure on neurocognitive function in obstructive sleep apnea patients: the Apnea Positive Pressure Long-term Efficacy Study (APPLES).
        Sleep. 2012; 35: 1593-1602
      4. Rosen CL, Auckley D, Benca R, et al. A multisite randomized trial of portable sleep studies and positive airway pressure autotitration versus laboratory-based polysomnography for the diagnosis and treatment of obstructive sleep apnea: the HomePAP Study. Sleep. 2012;35(6):757-767.

        • Caples S.M.
        • Rowley J.A.
        • Prinsell J.R.
        • et al.
        Surgical modifications of the upper airway for obstructive sleep apnea in adults: a systematic review and meta-analysis.
        Sleep. 2010; 33: 1396-1407
        • Strollo P.J.
        • Soose R.J.
        • Maurer J.T.
        • et al.
        Upper-airway stimulation for obstructive sleep apnea.
        N Engl J Med. 2014; 370: 139-149
        • Boon M.
        • Huntley C.
        • Steffen A.
        • et al.
        Upper airway stimulation for obstructive sleep apnea: results from the ADHERE Registry.
        Otolaryngol Head Neck Surg. 2018; 159: 379-385
        • Safiruddin F.
        • Vanderveken O.M.
        • De Vries N.
        • et al.
        Effect of upper-airway stimulation for obstructive sleep apnoea on airway dimensions.
        Eur Respir J. 2015; 45: 129-138
        • Schwartz A.R.
        • Barnes M.
        • Hillman D.
        • et al.
        Acute upper airway responses to hypoglossal nerve stimulation during sleep in obstructive sleep apnea.
        Am J Respir Crit Care Med. 2012; 185: 420-426
        • Heiser C.
        • Edenharter G.
        • Bas M.
        • Wirth M.
        • Hofauer B.
        Palatoglossus coupling in selective upper airway stimulation.
        Laryngoscope. 2017; 127: E378-E383
        • Eisele D.W.
        • Smith P.L.
        • Alam D.S.
        • Schwartz A.R.
        Direct hypoglossal nerve stimulation in obstructive sleep apnea.
        Arch Otolaryngol Head Neck Surg. 1997; 123: 57-61
        • Schwartz A.R.
        • Eisele D.W.
        • Hari A.
        • Testerman R.
        • Erickson D.
        • Smith P.L.
        Electrical stimulation of the lingual musculature in obstructive sleep apnea.
        J Appl Physiol. 1996; 81: 643-652
        • Oliven A.
        • O’Hearn D.J.
        • Boudewyns A.
        • et al.
        Upper airway response to electrical stimulation of the genioglossus in obstructive sleep apnea.
        J Appl Physiol. 2003; 95: 2023-2029
        • Van De Heyning P.H.
        • Badr M.S.
        • Baskin J.Z.
        • et al.
        Implanted upper airway stimulation device for obstructive sleep apnea.
        Laryngoscope. 2012; 122: 1626-1633
        • Squier S.B.
        • Patil S.P.
        • Schneider H.
        • Kirkness J.P.
        • Smith P.L.
        • Schwartz A.R.
        Effect of end-expiratory lung volume on upper airway collapsibility in sleeping men and women.
        J Appl Physiol (1985). 2010; 109: 977-985
        • Thut D.C.
        • Schwartz A.R.
        • Roach D.
        • Wise R.A.
        • Permutt S.
        • Smith P.L.
        Tracheal and neck position influence upper airway airflow dynamics by altering airway length.
        J Appl Physiol (1985). 1993; 75: 2084-2090
        • Rowley J.A.
        • Permutt S.
        • Willey S.
        • Smith P.L.
        • Schwartz A.R.
        Effect of tracheal and tongue displacement on upper airway airflow dynamics.
        J Appl Physiol. 1996; 80: 2171-2178
        • Hoffstein V.
        • Zamel N.
        • Phillipson E.A.
        Lung volume dependence of pharyngeal cross-sectional area in patients with obstructive sleep apnea.
        Am Rev Respir Dis. 2018; 130: 175-178
        • Kairaitis K.
        • Byth K.
        • Parikh R.
        • Stavrinou R.
        • Wheatley J.R.
        • Amis T.C.
        Tracheal traction effects on upper airway patency in rabbits: the role of tissue pressure.
        Sleep. 2007; 30: 179-186
        • Stadler D.L.
        • McEvoy R.D.
        • Bradley J.
        • Paul D.
        • Catcheside P.G.
        Changes in lung volume and diaphragm muscle activity at sleep onset in obese obstructive sleep apnea patients vs. healthy-weight controls.
        J Appl Physiol. 2010; 109: 1027-1036
        • Owens R.L.
        • Edwards B.A.
        • Sands S.A.
        • et al.
        Upper airway collapsibility and patterns of flow limitation at constant end-expiratory lung volume.
        J Appl Physiol. 2012; 113: 691-699
        • Owens R.L.
        • Malhotra A.
        • Eckert D.J.
        • White D.P.
        • Jordan A.S.
        The influence of end-expiratory lung volume on measurements of pharyngeal collapsibility.
        J Appl Physiol. 2010; 108: 445-451
        • Heinzer R.C.
        • Stanchina M.L.
        • Malhotra A.
        • et al.
        Lung volume and continuous positive airway pressure requirements in obstructive sleep apnea.
        Am J Respir Crit Care Med. 2005; 172: 114-117
        • Stanchina M.L.
        • Malhotra A.
        • Fogel R.B.
        • et al.
        The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus muscle activation during sleep.
        Sleep. 2003; 26: 851-856
        • Van de Graaff W.B.
        Thoracic influence on upper airway patency.
        J Appl Physiol. 1988; 65: 2124-2131
        • Van de Graaff W.B.
        Thoracic traction on the trachea: mechanisms and magnitude.
        J Appl Physiol. 1991; 70: 1328-1336
        • Catcheside P.G.
        • Ryan M.K.
        • Sprecher K.E.
        • et al.
        Abdominal compression increases upper airway collapsibility during sleep in obese male obstructive sleep apnea patients.
        Sleep. 2017; 32: 1579-1587
        • Series F.
        • Cormier Y.
        • Desmeules M.
        Influence of passive changes of lung volume on upper airways.
        J Appl Physiol. 1990; 68: 2159-2164
        • Davidson T.M.
        The great leap forward: the anatomic basis for the acquisition of speech and obstructive sleep apnea.
        Sleep Med. 2003; 4: 185-194
        • Honda K.
        • Hirai H.
        • Masaki S.
        • Shimada Y.
        Role of vertical larynx movement and cervical lordosis in F0 control.
        Language Speech. 1999; 42: 401-411
        • Eisele D.W.
        • Schwartz A.R.
        • Hari A.
        • Thut D.C.
        • Smith P.L.
        The effects of selective nerve stimulation on upper airway airflow mechanics.
        Arch Otolaryngol Head Neck Surg. 1995; 121: 1361-1364
        • Roberts J.L.
        • Reed W.R.
        • Thach B.T.
        Pharyngeal airway-stabilizing function of sternohyoid and sternothyroid muscles in the rabbit.
        J Appl Physiol Respir Environ Exerc Physiol. 1984; 57: 1790-1795
        • Kairaitis K.
        • Verma M.
        • Fish V.
        • Wheatley J.R.
        • Amis T.C.
        Pharyngeal muscle contraction modifies peri-pharyngeal tissue pressure in rabbits.
        Resp Physiol Neurobiol. 2009; 166: 95-101
        • Green K.K.
        • Kent D.T.
        • D’Agostino M.A.
        • et al.
        Drug-induced sleep endoscopy and surgical outcomes: a multicenter cohort study.
        Laryngoscope. 2019; 129: 761-770
        • Charakorn N.
        • Kezirian E.J.
        Drug-induced sleep endoscopy.
        Otolaryngol Clin North Am. 2016; 49: 1359-1372
        • Kezirian E.J.
        • Hohenhorst W.
        • de Vries N.
        Drug-induced sleep endoscopy: the VOTE classification.
        Eur Arch Otorhinolaryngol. 2011; 268: 1233-1236
        • Meng S.
        • Reissig L.F.
        • Tzou C.H.
        • Meng K.
        • Grisold W.
        • Weninger W.
        Ultrasound of the hypoglossal nerve in the neck: visualization and initial clinical experience with patients.
        Am J Neuroradiol. 2016; 37: 354-359
        • Chang K.V.
        • Lin C.P.
        • Hung C.Y.
        • Özçakar L.
        • Wang T.G.
        • Chen W.S.
        Sonographic nerve tracking in the cervical region: a pictorial essay and video demonstration.
        Am J Physical Med Rehabil. 2016; 95: 862-870
        • R Core Team
        R: A Language and Environment for Statistical Computing.
        R Foundation for Statistical Computing, 2019
        Date accessed: June 6, 2020
        • Amatoury J.
        • Kairaitis K.
        • Wheatley J.R.
        • Bilston L.E.
        • Amis T.C.
        Peripharyngeal tissue deformation and stress distributions in response to caudal tracheal displacement: pivotal influence of the hyoid bone?.
        J Appl Physiol. 2014; 116: 746-756
        • Tagaito Y.
        • Isono S.
        • Remmers J.E.
        • Tanaka A.
        • Nishino T.
        Lung volume and collapsibility of the passive pharynx in patients with sleep-disordered breathing.
        J Appl Physiol. 2007; 103: 1379-1385
        • Schwartz A.R.
        • Gold A.R.
        • Schubert N.
        • et al.
        Effect of weight loss on upper airway collapsibility in obstructive sleep apnea.
        Am Rev Respir Dis. 1991; 144: 494-498
        • Schwartz A.R.
        • Schubert N.
        • Rothman W.
        • et al.
        Effect of uvulopalatopharyngoplasty on upper airway collapsibility in obstructive sleep apnea.
        Am Rev Respir Dis. 1992; 145: 527-532
        • Banneheka S.
        Morphological study of the ansa cervicalis and the phrenic nerve.
        Anatomic Sci Int. 2008; 83: 31-44
        • Banneheka S.
        Anatomy of the ansa cervicalis: nerve fiber analysis.
        Anatomic Sci Int. 2008; 83: 61-67
        • Schwartz A.R.
        • Bennett M.L.
        • Smith P.L.
        • et al.
        Therapeutic electrical stimulation of the hypoglossal nerve in obstructive sleep apnea.
        Arch Otolaryngol Head Neck Surg. 2001; 127: 1216-1223
        • Guilleminault C.
        • Powell N.
        • Bowman B.
        • Stoohs R.
        The effect of electrical stimulation on obstructive sleep apnea syndrome.
        Chest. 1995; 107: 67-73
        • Dotan Y.
        • Golibroda T.
        • Oliven R.
        • et al.
        Parameters affecting pharyngeal response to genioglossus stimulation in sleep apnoea.
        Eur Respir J. 2011; 38: 338-347