Machine Learning and Prediction of All-Cause Mortality in COPD


      COPD is a leading cause of mortality.

      Research Question

      We hypothesized that applying machine learning to clinical and quantitative CT imaging features would improve mortality prediction in COPD.

      Study Design and Methods

      We selected 30 clinical, spirometric, and imaging features as inputs for a random survival forest. We used top features in a Cox regression to create a machine learning mortality prediction (MLMP) in COPD model and also assessed the performance of other statistical and machine learning models. We trained the models in subjects with moderate to severe COPD from a subset of subjects in Genetic Epidemiology of COPD (COPDGene) and tested prediction performance in the remainder of individuals with moderate to severe COPD in COPDGene and Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). We compared our model with the BMI, airflow obstruction, dyspnea, exercise capacity (BODE) index; BODE modifications; and the age, dyspnea, and airflow obstruction index.


      We included 2,632 participants from COPDGene and 1,268 participants from ECLIPSE. The top predictors of mortality were 6-min walk distance, FEV 1 % predicted, and age. The top imaging predictor was pulmonary artery-to-aorta ratio. The MLMP-COPD model resulted in a C index ≥ 0.7 in both COPDGene and ECLIPSE (6.4- and 7.2-year median follow-ups, respectively), significantly better than all tested mortality indexes ( P < .05). The MLMP-COPD model had fewer predictors but similar performance to that of other models. The group with the highest BODE scores (7-10) had 64% mortality, whereas the highest mortality group defined by the MLMP-COPD model had 77% mortality ( P = .012).


      An MLMP-COPD model outperformed four existing models for predicting all-cause mortality across two COPD cohorts. Performance of machine learning was similar to that of traditional statistical methods. The model is available online at:

      Key Words


      6MWD ( 6-min walk distance), ADO ( age, dyspnea, and airflow obstruction), BODE ( BMI, airflow obstruction, dyspnea, and exercise capacity), COPDGene ( Genetic Epidemiology of COPD), ECLIPSE ( Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), MLMP ( machine learning mortality prediction), PA:A ( pulmonary artery to aorta), % LAA < −950 HU ( percent emphysema determined by the percent low attenuation area of the lungs < −950 Hounsfield units ), Pi10 ( square root of wall area of a hypothetical airway with internal perimeter of 10 mm), RSF ( random survival forest), VIMP ( variable importance)
      To read this article in full you will need to make a payment
      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Soriano J.B.
        • Abajobir A.A.
        • Abate K.H.
        • et al.
        Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.
        Lancet Respir Med. 2017; 5: 691-706
        • Celli B.R.
        • Cote C.G.
        • Marin J.M.
        • et al.
        The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease.
        N Engl J Med. 2004; 350: 1005-1012
        • Soler-Cataluña J.J.
        • Martínez-García M.A.
        • Sánchez L.S.
        • Tordera M.P.
        • Sánchez P.R.
        Severe exacerbations and BODE index: two independent risk factors for death in male COPD patients.
        Respir Med. 2009; 103: 692-699
        • Moberg M.
        • Vestbo J.
        • Martinez G.
        • et al.
        Validation of the i-BODE index as a predictor of hospitalization and mortality in patients with COPD participating in pulmonary rehabilitation.
        COPD. 2014; 11: 381-387
        • Boeck L.
        • Soriano J.B.
        • Brusse-Keizer M.
        • et al.
        Prognostic assessment in COPD without lung function: the B-AE-D indices.
        Eur Respir J. 2016; 47: 1635-1644
        • Stolz D.
        • Meyer A.
        • Rakic J.
        • Boeck L.
        • Scherr A.
        • Tamm M.
        Mortality risk prediction in COPD by a prognostic biomarker panel.
        Eur Respir J. 2014; 44: 1557-1570
        • Jones R.C.
        • Donaldson G.C.
        • Chavannes N.H.
        • et al.
        Derivation and validation of a composite index of severity in chronic obstructive pulmonary disease: the DOSE index.
        Am J Respir Crit Care Med. 2009; 180: 1189-1195
        • Puhan M.A.
        • Garcia-Aymerich J.
        • Frey M.
        • et al.
        Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index.
        Lancet. 2009; 374: 704-711
        • Azarisman M.S.
        • Fauzi M.A.
        • Faizal M.P.A.
        • Azami Z.
        • Roslina A.M.
        • Roslan H.
        The SAFE (SGRQ score, air-flow limitation and exercise tolerance) index: a new composite score for the stratification of severity in chronic obstructive pulmonary disease.
        Postgrad Med J. 2007; 83: 492-497
        • Marin J.M.
        • Alfageme I.
        • Almagro P.
        • et al.
        Multicomponent indices to predict survival in COPD: the COCOMICS study.
        Eur Respir J. 2013; 42: 323-332
        • Guerra B.
        • Haile S.R.
        • Lamprecht B.
        • et al.
        Large-scale external validation and comparison of prognostic models: an application to chronic obstructive pulmonary disease.
        BMC Med. 2018; 16: 33
        • Johannessen A.
        • Skorge T.D.
        • Bottai M.
        • et al.
        Mortality by level of emphysema and airway wall thickness.
        Am J Respir Crit Care Med. 2013; 187: 602-608
        • Han M.K.
        • Kazerooni E.A.
        • Lynch D.A.
        • et al.
        Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes.
        Radiology. 2011; 261: 274-282
        • Wells J.M.
        • Washko G.R.
        • Han M.K.
        • et al.
        Pulmonary arterial enlargement and acute exacerbations of COPD.
        N Engl J Med. 2012; 367: 913-921
        • Terzikhan N.
        • Bos D.
        • Lahousse L.
        • et al.
        Pulmonary artery to aorta ratio and risk of all-cause mortality in the general population: the Rotterdam study.
        Eur Respir J. 2017; 49 (pii:1602168)
        • Putman R.K.
        • Hatabu H.
        • Araki T.
        • et al.
        Association between interstitial lung abnormalities and all-cause mortality.
        JAMA. 2016; 315: 672-681
        • Beam A.L.
        • Kohane I.S.
        Big data and machine learning in health care.
        JAMA. 2018; 319: 1317-1318
        • James G.
        • Witten D.
        • Hastie T.
        • Tibshirani R.
        An Introduction to Statistical Learning With Applications in R.
        Springer, New York, NY2013
      1. Sammut C. Webb G.I. Encyclopedia of Machine Learning and Data Mining. 2nd ed. Springer, New York, NY2017
        • Nichols J.A.
        • Herbert Chan H.W.
        • Baker M.A.B.
        Machine learning: applications of artificial intelligence to imaging and diagnosis.
        Biophys Rev. 2019; 11: 111-118
        • Sidey-Gibbons J.A.M.
        • Sidey-Gibbons C.J.
        Machine learning in medicine: a practical introduction.
        BMC Med Res Methodol. 2019; 19: 64
        • Delen D.
        • Oztekin A.
        • Kong Z.J.
        A machine learning-based approach to prognostic analysis of thoracic transplantations.
        Artif Intell Med. 2010; 49: 33-42
        • Christodoulou E.
        • Ma J.
        • Collins G.S.
        • Steyerberg E.W.
        • Verbakel J.Y.
        • Van Calster B.
        A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models.
        J Clin Epidemiol. 2019; 110: 12-22
        • Saria S.
        • Butte A.
        • Sheikh A.
        Better medicine through machine learning: what’s real, and what’s artificial?.
        PLoS Med. 2018; 15e1002721
        • Naylor C.D.
        On the Prospects for a (deep) learning health care system.
        JAMA. 2018; 320: 1099-1100
        • Leidy N.K.
        • Malley K.G.
        • Steenrod A.W.
        • et al.
        Insight into best variables for COPD case identification: a random forests analysis.
        Chronic Obstr Pulm Dis. 2016; 3: 406-418
        • Amalakuhan B.
        • Kiljanek L.
        • Parvathaneni A.
        • Hester M.
        • Cheriyath P.
        • Fischman D.
        A prediction model for COPD readmissions: catching up, catching our breath, and improving a national problem.
        J Community Hosp Intern Med Perspect. 2012; 2
        • Motwani M.
        • Dey D.
        • Berman D.S.
        • et al.
        Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis.
        Eur Heart J. 2017; 38: 500-507
        • Dawes T.J.W.
        • de Marvao A.
        • Shi W.
        • et al.
        Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: a cardiac MR imaging study.
        Radiology. 2017; 283: 381-390
        • Iyer A.S.
        • Wells J.M.
        • Vishin S.
        • Bhatt S.P.
        • Wille K.M.
        • Dransfield M.T.
        CT scan-measured pulmonary artery to aorta ratio and echocardiography for detecting pulmonary hypertension in severe COPD.
        Chest. 2014; 145: 824-832
        • Van Tho N.
        • Ogawa E.
        • Trang L.T.H.
        • et al.
        A mixed phenotype of airway wall thickening and emphysema is associated with dyspnea and hospitalization for chronic obstructive pulmonary disease.
        Ann Am Thorac Soc. 2015; 12: 988-996
        • Parr D.G.
        • Stoel B.C.
        • Stolk J.
        • Stockley R.A.
        Validation of computed tomographic lung densitometry for monitoring emphysema in α1-antitrypsin deficiency.
        Thorax. 2006; 61: 485-490
        • Ishwaran H.
        • Kogalur U.B.
        • Blackstone E.H.
        • Lauer M.S.
        Random survival forests.
        Ann Appl Stat. 2008; 2: 841-860
        • Ishwaran H.
        Variable importance in binary regression trees and forests.
        Electron J Stat. 2007; 1: 519-537
        • Hair Jr., J.F.
        • Anderson R.E.
        • Tatham R.L.
        • Black W.C.
        Multivariate Data Analysis.
        3rd ed. Macmillan, New York, NY1995
        • Pencina M.J.
        • D’Agostino R.B.
        Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation.
        Stat Med. 2004; 23: 2109-2123
        • Therneau T.
        A Package for Survival Analysis in R. 2020. R package version 3.1-12.
        • Therneau T.M.
        • Grambsch P.M.
        Modeling Survival Data: Extending the Cox Model.
        Springer, New York, NY2000
        • Harrell Jr., F.E.
        • Lee K.L.
        • Mark D.B.
        Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors.
        Stat Med. 1996; 15: 361-387
        • Sing T.
        • Sander O.
        • Beerenwinkel N.
        • Lengauer T.
        ROCR: visualizing classifier performance in R.
        Bioinformatics. 2005; 21: 3940-3941
        • Kang L.
        • Chen W.
        • Petrick N.A.
        • Gallas B.D.
        Comparing two correlated C indices with right-censored survival outcome: a one-shot nonparametric approach.
        Stat Med. 2015; 34: 685-703
        • Demler O.V.
        • Paynter N.P.
        • Cook N.R.
        Tests of calibration and goodness-of-fit in the survival setting.
        Stat Med. 2015; 34: 1659-1680
        • Stolz D.
        • Kostikas K.
        • Blasi F.
        • et al.
        Adrenomedullin refines mortality prediction by the BODE index in COPD: the "BODE-A" index.
        Eur Respir J. 2014; 43 ([published correction appears in Eur Respir J. 2014;44(6):1718]): 397-408
        • Bloom C.I.
        • Ricciardi F.
        • Smeeth L.
        • Stone P.
        • Quint J.K.
        Predicting COPD 1-year mortality using prognostic predictors routinely measured in primary care.
        BMC Med. 2019; 17: 73
        • Haile S.R.
        • Guerra B.
        • Soriano J.B.
        • et al.
        Multiple score comparison: a network meta-analysis approach to comparison and external validation of prognostic scores.
        BMC Med Res Methodol. 2017; 17: 1-12
        • Soriano J.B.
        • Lamprecht B.
        • Ramírez A.S.
        • et al.
        Mortality prediction in chronic obstructive pulmonary disease comparing the GOLD 2007 and 2011 staging systems: a pooled analysis of individual patient data.
        Lancet Respir Med. 2015; 3: 443-450
        • Celli B.R.
        • Locantore N.
        • Yates J.
        • et al.
        Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2012; 185: 1065-1072
        • Briggs A.H.
        • Baker T.
        • Risebrough N.A.
        • et al.
        Development of the Galaxy Chronic Obstructive Pulmonary Disease (COPD) model using data from ECLIPSE: internal validation of a linked-equations cohort model.
        Med Decis Making. 2017; 37: 469-480
        • Hoogendoorn M.
        • Feenstra T.L.
        • Asukai Y.
        • et al.
        External validation of health economic decision models for chronic obstructive pulmonary disease (COPD): report of the Third COPD Modeling Meeting.
        Value Health. 2017; 20: 397-403
        • Pinto-Plata V.M.
        • Cote C.
        • Cabral H.
        • Taylor J.
        • Celli B.R.
        The 6-min walk distance: change over time and value as a predictor of survival in severe COPD.
        Eur Respir J. 2004; 23: 28-33
        • Polkey M.I.
        • Spruit M.A.
        • Edwards L.D.
        • et al.
        Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization.
        Am J Respir Crit Care Med. 2013; 187: 382-386
        • Celli B.
        • Tetzl K.
        • Criner G.
        • et al.
        The 6-minute-walk distance test as a chronic obstructive pulmonary disease stratification tool: insights from the COPD Biomarker Qualification Consortium.
        Am J Respir Crit Care Med. 2016; 194: 1483-1493
        • Schmidt S.A.J.
        • Johansen M.B.
        • Olsen M.
        • et al.
        The impact of exacerbation frequency on mortality following acute exacerbations of COPD: a registry-based cohort study.
        BMJ Open. 2014; 4e006720
        • Soler-Cataluña J.J.
        • Martínez-García M.A.
        • Román Sánchez P.
        • Salcedo E.
        • Navarro M.
        • Ochando R.
        Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease.
        Thorax. 2005; 60: 925-931
        • Suissa S.
        • Dell’Aniello S.
        • Ernst P.
        Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality.
        Thorax. 2012; 67: 957-963
        • Cardoso J.
        • Coelho R.
        • Rocha C.
        • Coelho C.
        • Semedo L.
        • Bugalho Almeida A.
        Prediction of severe exacerbations and mortality in COPD: the role of exacerbation history and inspiratory capacity/total lung capacity ratio.
        Int J Chron Obstruct Pulmon Dis. 2018; 13: 1105-1113
        • Ho T.W.
        • Huang C.T.
        • Ruan S.Y.
        • Tsai Y.J.
        • Lai F.
        • Yu C.J.
        Diabetes mellitus in patients with chronic obstructive pulmonary disease: the impact on mortality.
        PLoS One. 2017; 12e0175794
        • Miller J.
        • Edwards L.D.
        • Agustí A.
        • et al.
        Comorbidity, systemic inflammation and outcomes in the ECLIPSE cohort.
        Respir Med. 2013; 107: 1376-1384
        • LaFon D.C.
        • Bhatt S.P.
        • Labaki W.W.
        • et al.
        COPDGene Investigators. Pulmonary artery enlargement and mortality risk in moderate to severe COPD: results from COPDGene.
        Eur Respir J. 2020; 55: 1901812
        • Lowe K.E.
        • Regan E.A.
        • Anzueto A.
        • et al.
        COPDGene® 2019: redefining the diagnosis of chronic obstructive pulmonary disease.
        Chronic Obstr Pulm Dis. 2019; 6: 384-399
        • González G.
        • Ash S.Y.
        • Vegas-Sánchez-Ferrero G.
        • et al.
        Disease staging and prognosis in smokers using deep learning in chest computed tomography.
        Am J Respir Crit Care Med. 2018; 197: 193-203
        • Datema F.R.
        • Moya A.
        • Krause P.
        • et al.
        Novel head and neck cancer survival analysis approach: random survival forests versus Cox proportional hazards regression.
        Head Neck. 2012; 34: 50-58
        • Dziadzko M.A.
        • Gajic O.
        • Pickering B.W.
        • Herasevich V.
        Clinical calculators in hospital medicine: availability, classification, and needs.
        Comput Methods Programs Biomed. 2016; 133: 1-6
        • Mosa A.S.M.
        • Yoo I.
        • Sheets L.
        A systematic review of healthcare applications for smartphones.
        BMC Med Inform Decis Mak. 2012; 12: 67
        • Mickan S.
        • Atherton H.
        • Roberts N.W.
        • Heneghan C.
        • Tilson J.K.
        Use of handheld computers in clinical practice: a systematic review.
        BMC Med Inform Decis Mak. 2014; 14: 56
        • Weill D.
        • Benden C.
        • Corris P.A.
        • et al.
        A consensus document for the selection of lung transplant candidates: 2014—an update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation.
        J Heart Lung Transplant. 2015; 34: 1-15
        • Orens J.B.
        • Estenne M.
        • Arcasoy S.
        • et al.
        International guidelines for the selection of lung transplant candidates: 2006 update—a consensus report from the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation.
        J Heart Lung Transplant. 2006; 25: 745-755