Advertisement

Prevention of Asthma

Targets for Intervention
      Approximately 300 million people worldwide are estimated to be affected by asthma, and the number of patients affected is growing exponentially—with potential for an additional 100 million people affected by the condition by 2025. With this increasing burden of disease, there is high motivation to discover effective prevention strategies. Strategies aimed at stalling the atopic progression, modifying the microbiome, preventing respiratory viral infections, and reducing the impact of toxin/pollutant exposure through dietary supplements have had limited success in the prevention of asthma. This is likely because asthma is heterogenous and is influenced by different genetic and environmental factors. Genes underlie a predisposition to asthma and allergic sensitization, whereas exposure to allergens, respiratory infections, and pollution may modify asthma pathogenesis and the variation in severity seen among individuals. Future advances in asthma prevention may include a more personalized approach: genetic variations among susceptible individuals with distinct asthma phenotypes or different biomarkers of disease may help individualize prevention strategies and render them more . In this article, we summarize interventions that have been studied for the prevention of asthma and identify some of the clinical trials that are actively underway in asthma prevention.

      Key Words

      Abbreviations:

      AR (allergic rhinoconjunctivitis), COAST (Childhood Origins of ASThma), HDM (house dust mite), IT (immunotherapy), LRTI (lower respiratory tract infection), RCT (randomized controlled trial), RSV (respiratory syncytial virus), RV (rhinovirus), SCIT (subcutaneous immunotherapy), SLIT (sublingual immunotherapy)
      To read this article in full you will need to make a payment
      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Masoli M.
        • Fabian D.
        • Holt S.
        • Beasley R.
        The global burden of asthma: executive summary of the GINA Dissemination Committee report.
        Allergy. 2004; 59: 469-478
        • Gur M.
        • Hakim F.
        • Bentur L.
        Better understanding of childhood asthma, towards primary prevention: are we there yet? Consideration of pertinent literature.
        F1000Res. 2017; 6: 2152
        • McGeachie M.J.
        • Yates K.P.
        • Zhou X.
        • et al.
        Patterns of growth and decline in lung function in persistent childhood asthma.
        N Engl J Med. 2016; 374: 1842-1852
        • Rhodes H.L.
        • Sporik R.
        • Thomas P.
        • Holgate S.T.
        • Cogswell J.J.
        Early life risk factors for adult asthma: a birth cohort study of subjects at risk.
        J Allergy Clin Immunol. 2001; 108: 720-725
        • Beigelman A.
        • Bacharier L.B.
        Early-life respiratory infections and asthma development: role in disease pathogenesis and potential targets for disease prevention.
        Curr Opin Allergy Clin Immunol. 2016; 16: 172-178
        • Joubert B.R.
        • Felix J.F.
        • Yousefi P.
        • et al.
        DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis.
        Am J Hum Genet. 2016; 98: 680-696
        • Shorey-Kendrick L.E.
        • McEvoy C.T.
        • Ferguson B.
        • et al.
        Vitamin C prevents offspring DNA methylation changes associated with maternal smoking in pregnancy.
        Am J Respir Crit Care Med. 2017; 196: 745-755
        • Liu C.
        • Huang R.
        • Yao R.
        • Yang A.
        The immunotherapeutic role of bacterial lysates in a mouse model of asthma.
        Lung. 2017; 195: 563-569
        • Rodrigues A.
        • Gualdi L.P.
        • de Souza R.G.
        • et al.
        Bacterial extract (OM-85) with human-equivalent doses does not inhibit the development of asthma in a murine model.
        Allergol Immunopathol. 2016; 44: 504-511
      1. Preventing Asthma in High Risk Kids (PARK).
      2. Azithromycin to prevent wheezing following severe RSV bronchiolitis-II (APW-RSV-II).
        • Lukkarinen M.
        • Koistinen A.
        • Turunen R.
        • Lehtinen P.
        • Vuorinen T.
        • Jartti T.
        Rhinovirus-induced first wheezing episode predicts atopic but not nonatopic asthma at school age.
        J Allergy Clin Immunol. 2017; 140: 988-995
        • Stoltz D.J.
        • Jackson D.J.
        • Evans M.D.
        • et al.
        Specific patterns of allergic sensitization in early childhood and asthma & rhinitis risk.
        Clin Exp Allergy. 2013; 43: 233-241
        • Arshad S.H.
        • Bateman B.
        • Sadeghnejad A.
        • Gant C.
        • Matthews S.M.
        Prevention of allergic disease during childhood by allergen avoidance: the Isle of Wight prevention study.
        J Allergy Clin Immunol. 2007; 119: 307-313
        • Scott M.
        • Roberts G.
        • Kurukulaaratchy R.J.
        • Matthews S.
        • Nove A.
        • Arshad S.H.
        Multifaceted allergen avoidance during infancy reduces asthma during childhood with the effect persisting until age 18 years.
        Thorax. 2012; 67: 1046-1051
        • Bacharier L.B.
        • Beigelman A.
        • Calatroni A.
        • et al.
        Longitudinal phenotypes of respiratory health in a high-risk urban birth cohort.
        Am J Respir Crit Care Med. 2019; 199: 71-82
        • Cullinan P.
        • MacNeill S.J.
        • Harris J.M.
        • et al.
        Early allergen exposure, skin prick responses, and atopic wheeze at age 5 in English children: a cohort study.
        Thorax. 2004; 59: 855-861
        • Marks G.B.
        • Mihrshahi S.
        • Kemp A.S.
        • et al.
        Prevention of asthma during the first 5 years of life: a randomized controlled trial.
        J Allergy Clin Immunol. 2006; 118: 53-61
        • Belgrave D.C.M.
        • Granell R.
        • Turner S.W.
        • et al.
        Lung function trajectories from pre-school age to adulthood and their associations with early life factors: a retrospective analysis of three population-based birth cohort studies.
        Lancet Respir Med. 2018; 6: 526-534
        • Stokholm J.
        • Chawes B.L.
        • Vissing N.
        • Bonnelykke K.
        • Bisgaard H.
        Cat exposure in early life decreases asthma risk from the 17q21 high-risk variant.
        J Allergy Clin Immunol. 2018; 141: 1598-1606
        • Munthe-Kaas M.C.
        • Bertelsen R.J.
        • Torjussen T.M.
        • et al.
        Pet keeping and tobacco exposure influence CD14 methylation in childhood.
        Pediatr Allergy Immunol. 2012; 23: 747-754
        • Jacobsen L.
        • Niggemann B.
        • Dreborg S.
        • et al.
        Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study.
        Allergy. 2007; 62: 943-948
        • Novembre E.
        • Galli E.
        • Landi F.
        • et al.
        Coseasonal sublingual immunotherapy reduces the development of asthma in children with allergic rhinoconjunctivitis.
        J Allergy Clin Immunol. 2004; 114: 851-857
        • Zolkipli Z.
        • Roberts G.
        • Cornelius V.
        • et al.
        Randomized controlled trial of primary prevention of atopy using house dust mite allergen oral immunotherapy in early childhood.
        J Allergy Clin Immunol. 2015; 136: 1541-1547
        • Marogna M.
        • Massolo A.
        • Passalacqua G.
        Effect of adjuvanted and standard sublingual immunotherapy on respiratory function in pure rhinitis due to house dust mite over a 5-year period.
        World Allergy Org J. 2017; 10: 7
        • Valovirta E.
        • Petersen T.H.
        • Piotrowska T.
        • et al.
        Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy.
        J Allergy Clin Immunol. 2018; 141: 529-538
        • Jacobsen L.
        • Wahn U.
        • Bilo M.B.
        Allergen-specific immunotherapy provides immediate, long-term and preventive clinical effects in children and adults: the effects of immunotherapy can be categorised by level of benefit -the centenary of allergen specific subcutaneous immunotherapy.
        Clin Transl Allergy. 2012; 2: 8
        • Marogna M.
        • Spadolini I.
        • Massolo A.
        • Canonica G.W.
        • Passalacqua G.
        Long-lasting effects of sublingual immunotherapy according to its duration: a 15-year prospective study.
        J Allergy Clin Immunol. 2010; 126: 969-975
        • Kristiansen M.
        • Dhami S.
        • Netuveli G.
        • et al.
        Allergen immunotherapy for the prevention of allergy: a systematic review and meta-analysis.
        Pediatr Allergy Immunol. 2017; 28: 18-29
        • Wang A.L.
        • Datta S.
        • Weiss S.T.
        • Tantisira K.G.
        Remission of persistent childhood asthma: early predictors of adult outcomes.
        J Allergy Clin Immunol. 2019; 143: 1752-1759
        • Guilbert T.W.
        • Morgan W.J.
        • Zeiger R.S.
        • et al.
        Long-term inhaled corticosteroids in preschool children at high risk for asthma.
        N Engl J Med. 2006; 354: 1985-1997
        • Devulapalli C.S.
        • Lodrup Carlsen K.C.
        • Haland G.
        • et al.
        No evidence that early use of inhaled corticosteroids reduces current asthma at 10 years of age.
        Respir Med. 2007; 101: 1625-1632
        • Bisgaard H.
        • Hermansen M.N.
        • Loland L.
        • Halkjaer L.B.
        • Buchvald F.
        Intermittent inhaled corticosteroids in infants with episodic wheezing.
        N Engl J Med. 2006; 354: 1998-2005
        • Holgate S.T.
        The sentinel role of the airway epithelium in asthma pathogenesis.
        Immunol Rev. 2011; 242: 205-219
        • Turner S.
        • Custovic A.
        • Ghazal P.
        • et al.
        Pulmonary epithelial barrier and immunological functions at birth and in early life: key determinants of the development of asthma? A description of the protocol for the Breathing Together study.
        Wellcome Open Res. 2018; 3: 60
        • Alshaarawy O.
        • Anthony J.C.
        Month-wise estimates of tobacco smoking during pregnancy for the United States, 2002-2009.
        Maternal Child Health J. 2015; 19: 1010-1015
        • McEvoy C.T.
        • Schilling D.
        • Clay N.
        • et al.
        Vitamin C supplementation for pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial.
        JAMA. 2014; 311: 2074-2082
        • Zosky G.R.
        • Berry L.J.
        • Elliot J.G.
        • James A.L.
        • Gorman S.
        • Hart P.H.
        Vitamin D deficiency causes deficits in lung function and alters lung structure.
        Am J Respir Crit Care Med. 2011; 183: 1336-1343
        • Bolcas P.E.
        • Brandt E.B.
        • Zhang Z.
        • Biagini Myers J.M.
        • Ruff B.P.
        • Khurana Hershey G.K.
        Vitamin D supplementation attenuates asthma development following traffic-related particulate matter exposure.
        J Allergy Clin Immunol. 2019; 143: 386-394
        • Litonjua A.A.
        • Carey V.J.
        • Laranjo N.
        • et al.
        Six-year follow-up of a trial of antenatal vitamin D for asthma reduction.
        N Engl J Med. 2020; 382: 525-533
        • Yang H.
        • Xun P.
        • He K.
        Fish and fish oil intake in relation to risk of asthma: a systematic review and meta-analysis.
        PloS One. 2013; 8e80048
        • Bisgaard H.
        • Stokholm J.
        • Chawes B.L.
        • et al.
        Fish oil-derived fatty acids in pregnancy and wheeze and asthma in offspring.
        N Engl J Med. 2016; 375: 2530-2539
        • Karvonen A.M.
        • Kirjavainen P.V.
        • Taubel M.
        • et al.
        Indoor bacterial microbiota and development of asthma by 10.5 years of age.
        J Allergy Clin Immunol. 2019; 144: 1402-1410
        • Sender R.
        • Fuchs S.
        • Milo R.
        Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans.
        Cell. 2016; 164: 337-340
        • Levan S.R.
        • Stamnes K.A.
        • Lin D.L.
        • et al.
        Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance.
        Nature Microbiol. 2019; 4: 1851-1861
        • Patrick D.M.
        • Sbihi H.
        • Dai D.L.Y.
        • et al.
        Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: evidence from population-based and prospective cohort studies.
        Lancet Respir Med. 2020; ([Published online ahead of print March 24, 2020])https://doi.org/10.1016/S2213-2600(20)30052-7
        • Cuello-Garcia C.A.
        • Brozek J.L.
        • Fiocchi A.
        • et al.
        Probiotics for the prevention of allergy: a systematic review and meta-analysis of randomized controlled trials.
        J Allergy Clin Immunol. 2015; 136: 952-961
        • Cabana M.D.
        • McKean M.
        • Caughey A.B.
        • et al.
        Early probiotic supplementation for eczema and asthma prevention: a randomized controlled trial.
        Pediatrics. 2017; 140
        • Bisgaard H.
        • Hermansen M.N.
        • Buchvald F.
        • et al.
        Childhood asthma after bacterial colonization of the airway in neonates.
        N Engl J Med. 2007; 357: 1487-1495
        • Larsen J.M.
        • Brix S.
        • Thysen A.H.
        • Birch S.
        • Rasmussen M.A.
        • Bisgaard H.
        Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants.
        J Allergy Clin Immunol. 2014; 133: 1008-1013
        • Yin J.
        • Xu B.
        • Zeng X.
        • Shen K.
        Broncho-Vaxom in pediatric recurrent respiratory tract infections: a systematic review and meta-analysis.
        Int Immunopharmacol. 2018; 54: 198-209
        • Sly P.D.
        • Galbraith S.
        • Islam Z.
        • Holt B.
        • Troy N.
        • Holt P.G.
        Primary prevention of severe lower respiratory illnesses in at-risk infants using the immunomodulator OM-85.
        J Allergy Clin Immunol. 2019; 144: 870-872
      3. Oral Bacterial Extract for the prevention of wheezing lower respiratory tract illness (ORBEX).
        clinicaltrials.gov/ct2/show/NCT02148796
        Date accessed: April 1, 2020
        • Regnier S.A.
        • Huels J.
        Association between respiratory syncytial virus hospitalizations in infants and respiratory sequelae: systematic review and meta-analysis.
        Pediatr Infect Dis J. 2013; 32: 820-826
        • Scheltema N.M.
        • Nibbelke E.E.
        • Pouw J.
        • et al.
        Respiratory syncytial virus prevention and asthma in healthy preterm infants: a randomised controlled trial.
        Lancet Respir Med. 2018; 6: 257-264
        • O’Brien K.L.
        • Chandran A.
        • Weatherholtz R.
        • et al.
        Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomised double-blind placebo-controlled trial.
        Lancet Infect Dis. 2015; 15: 1398-1408
      4. A study to determine the safety and efficacy of the rsv f vaccine to protect infants via maternal immunization.
      5. A study to evaluate the safety and efficacy of MEDI8897 for the prevention of medically attended RSV LRTI in healthy preterm infants. (MEDI8897 Ph2b).
      6. Randomised controlled trial of paracetamol or ibuprofen, as required for fever and pain in the first year of life, for prevention of asthma at age six years.
        • Jackson D.J.
        • Gangnon R.E.
        • Evans M.D.
        • et al.
        Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children.
        Am J Respir Crit Care Med. 2008; 178: 667-672
        • Jartti T.
        • Gern J.E.
        Role of viral infections in the development and exacerbation of asthma in children.
        J Allergy Clin Immunol. 2017; 140: 895-906
        • Lemanske Jr., R.F.
        • Jackson D.J.
        • Gangnon R.E.
        • et al.
        Rhinovirus illnesses during infancy predict subsequent childhood wheezing.
        J Allergy Clin Immunol. 2005; 116: 571-577
        • Kusel M.M.
        • de Klerk N.H.
        • Kebadze T.
        • et al.
        Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma.
        J Allergy Clin Immunol. 2007; 119: 1105-1110
        • Altman M.C.
        • Beigelman A.
        • Ciaccio C.
        • et al.
        Evolving concepts in how viruses impact asthma.
        J Allergy Clin Immunol. 2020; ([published online ahead of print January 9, 2020])https://doi.org/10.1016/j.jaci.2019.12.904
        • Magnus M.C.
        • Karlstad O.
        • Haberg S.E.
        • Nafstad P.
        • Davey Smith G.
        • Nystad W.
        Prenatal and infant paracetamol exposure and development of asthma: the Norwegian Mother and Child Cohort Study.
        Int J Epidemiol. 2016; 45: 512-522
        • Sheehan W.J.
        • Mauger D.T.
        • Paul I.M.
        • et al.
        Acetaminophen versus ibuprofen in young children with mild persistent asthma.
        N Engl J Med. 2016; 375: 619-630
        • Beigelman A.
        • Isaacson-Schmid M.
        • Sajol G.
        • et al.
        Randomized trial to evaluate azithromycin's effects on serum and upper airway IL-8 levels and recurrent wheezing in infants with respiratory syncytial virus bronchiolitis.
        J Allergy Clin Immunol. 2015; 135: 1171-1178
        • Cardet J.C.
        • Casale T.B.
        New insights into the utility of omalizumab.
        J Allergy Clin Immunol. 2019; 143: 923-926
        • Teach S.J.
        • Gill M.A.
        • Togias A.
        • et al.
        Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations.
        J Allergy Clin Immunol. 2015; 136: 1476-1485
        • Busse W.W.
        • Morgan W.J.
        • Gergen P.J.
        • et al.
        Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children.
        N Engl J Med. 2011; 364: 1005-1015
        • Gill M.A.
        • Liu A.H.
        • Calatroni A.
        • et al.
        Enhanced plasmacytoid dendritic cell antiviral responses after omalizumab.
        J Allergy Clin Immunol. 2018; 141: 1735-1743
        • Klaassen E.M.
        • van de Kant K.D.
        • Jobsis Q.
        • et al.
        Exhaled biomarkers and gene expression at preschool age improve asthma prediction at 6 years of age.
        Am J Respir Crit Care Med. 2015; 191: 201-207
        • Kho A.T.
        • McGeachie M.J.
        • Moore K.G.
        • et al.
        Circulating microRNAs and prediction of asthma exacerbation in childhood asthma.
        Respir Res. 2018; 19: 128
        • Kantor D.B.
        • Stenquist N.
        • McDonald M.C.
        • et al.
        Rhinovirus and serum IgE are associated with acute asthma exacerbation severity in children.
        J Allergy Clin Immunol. 2016; 138: 1467-1471