Cohort studies are types of observational studies in which a cohort, or a group of individuals sharing some characteristic, are followed up over time, and outcomes are measured at one or more time points. Cohort studies can be classified as prospective or retrospective studies, and they have several advantages and disadvantages. This article reviews the essential characteristics of cohort studies and includes recommendations on the design, statistical analysis, and reporting of cohort studies in respiratory and critical care medicine. Tools are provided for researchers and reviewers.

KEY WORDS: bias; cohort studies; confounding; prospective; retrospective

General Overview of Cohort Study Design
The term “cohort” in modern epidemiology refers to “a group of people with defined characteristics who are followed up to determine the incidence of, or mortality from, some specific disease, all causes of death, or some other outcome.” A cohort study observes people as two or more groups, from exposure to outcome. A key feature of the cohort study design is that subjects are followed up over time. It begins with subjects who are exposed and not exposed to a factor and then evaluates the subsequent occurrence of an outcome. Unlike cross-sectional studies, which are often used to determine prevalence, cohort studies are used to study incidence, causes, and prognosis.

In clinical research, cohort studies are appropriate when there is evidence to suggest an association between an exposure and an outcome, and the time interval between exposure and the development of outcome is reasonable. Cohort studies are the design of choice for determining the incidence and natural history of a condition. Due to their longitudinal design feature, one can look at disease progression and natural history. Cohort studies allow us to calculate the incidence rate, cumulative incidence, relative risk, and hazard ratio. Causality cannot be established definitively through a cohort study. Nevertheless, cohort studies are useful to provide evidence that suggests causality and information regarding the strength of the association between the risk factors and the outcome.

Description of Subtypes of Cohort Studies
Cohort studies can be either prospective or retrospective. The type of cohort study is determined by the outcome status. If the outcome has not occurred at the start of the study, then it is a prospective study; if the outcome has already occurred, then it is a retrospective study. Figure 1 presents a

ABBREVIATION: CAP = community-acquired pneumonia
AFFILIATIONS: From the Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.
CORRESPONDENCE TO: Xiaofeng Wang, PhD, Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave/JJN3-01, Cleveland, OH 44195; e-mail: wangx6@ccf.org
Copyright © 2020 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
DOI: https://doi.org/10.1016/j.chest.2020.03.014
graphical representation of the designs of prospective and retrospective cohort studies. The distinguishing feature of a prospective cohort study is that at the time that the investigators begin enrolling subjects, none of the subjects has developed the outcome of interest. In contrast, a retrospective study is conceived after subjects have already developed the outcome. The investigators jump back in time to identify a cohort of subjects at a point in time when they did not have the outcome. A prospective cohort study design is ranked higher in the hierarchy of evidence than a retrospective design because the outcome, predictor, and confounding variables can be better measured and controlled. Information gained from a retrospective study can be helpful in planning a future prospective study.

A study combining two study designs, the case-cohort design, is a combination of a case-control and cohort design that can be either prospective or retrospective. The case-cohort design can be viewed as a variant of the nested case-control design. In a nested case-control study, one starts with identifying cases that have already occurred (retrospective) or as they occur (prospective) in a defined cohort. A specific number of control subjects are then selected from among those in the cohort. Limitations in this type of design include: (1) inefficiency due to the need to align each selected case subject to its matched control subject; and (2) when there is more than one outcome considered, strict implementation of the design requires the selection of a new set of control subjects for each distinct disease outcome. The case-cohort design was proposed by Prentice as a cost-effective alternative to the nested case-control design. In a case-cohort design, a subcohort is randomly drawn from the full cohort, and the case-cohort sample consists of the subcohort plus those subjects from the entire cohort whose outcome occurred during the study period. Figure 2 illustrates the subject selection process of a case-cohort sample. The case-cohort study design is efficient when only a very small fraction of the full cohort develops the outcome in the given study time frame and the exposure measurement of interest is expensive to obtain.

Use Cases of Cohort Studies

Example 1

Nijkeuter et al conducted a prospective cohort study to understand the natural course of hemodynamically stable pulmonary embolism (PE). The study aimed to evaluate the incidence of recurrent VTE, hemorrhagic
complications, and mortality in patients with PE, and to identify risk factors and the time course of these events. Between November 2002 and September 2004, a total of 3,503 patients with clinically suspected PE were screened, and PE was diagnosed in 674 patients. Three-month follow-up was completed in 673 of the 674 patients with PE. The authors found that recurrent VTE occurred in a small percentage of patients treated for an acute PE, and the majority of recurrent VTEs were fatal. Immobilization, hospitalization, age, COPD, and malignancies were risk factors for recurrent VTE, bleeding, and mortality.

Example 2
Short et al.\(^{11}\) performed a retrospective cohort study to examine the effect of \(\beta\)-blockers in the management of COPD. They searched a disease-specific database of patients with COPD and linked to the Scottish morbidity records of acute hospital admissions, the Tayside community pharmacy prescription records, and the General Register Office for Scotland death registry. A total of 5,977 patients aged > 50 years with a diagnosis of COPD were identified and divided into two groups according to \(\beta\)-blocker use. The study found that \(\beta\)-blockers might reduce mortality and COPD exacerbations when added to established inhaled stepwise therapy for COPD, independently of overt cardiovascular disease and cardiac drugs, and with no adverse effects on pulmonary function.

Example 3
Skull et al.\(^{12}\) described the epidemiology of community-acquired pneumonia (CAP) in elderly Australian subjects. Using a case-cohort design, cases with CAP were identified as in-patients aged \(\geq 65\) years with International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification codes J10 to J18 admitted over 2 years to two tertiary hospitals. The cohort sample was randomly selected from all hospital discharges and frequency-matched to case subjects according to month. A total of 4,772 inpatients were studied. The strongest predictors of CAP were previous pneumonia, history of other respiratory disease, and aspiration. ICU admission, renal disease, and increasing age were the strongest predictors of mortality, whereas influenza vaccination conferred protection.

Benefits and Downside of Cohort Studies
A major advantage of the cohort study design is the ability to study multiple outcomes that can be associated with a single exposure or multiple exposures in a single study. Even the combined effect of multiple exposures on the outcome can be determined. Cohort study designs also allow for the study of rare exposures. Investigators can specifically select subjects exposed to a certain factor. Furthermore, cohort studies often have broader inclusion and fewer exclusion criteria compared with randomized controlled trials. The investigators may obtain large samples and reach greater power in statistical analysis relative to a randomized controlled trial. For these reasons, results from cohort studies may be more generalizable in clinical practice. Finally, the longitudinal nature of cohort studies means that changes in levels of exposure over time, and changes in outcome, can be measured to provide insight into the dynamic relation between exposure and outcome.

Prospective and retrospective studies have different strengths and weaknesses. Prospective cohort studies are conducted from the present time to the future, and thus they have an advantage of being accurate regarding the information collected about exposures, end points, and confounders. The disadvantage could be the long period of follow-up while waiting for events to occur, leading to vulnerability to a high rate of loss to follow-up.

Retrospective studies rely on data collected in the past to identify both exposures and outcomes. These studies use data that have already been collected, such as would be obtained using a database extracted from electronic medical records. Thus, cohort studies are often time-efficient and cost-effective. However, many retrospective cohort studies use data that were collected in the past for another objective. Hence, the investigators lack control over the collection of data. The measurement of variables might be inaccurate or inconsistent, which results in a source of information bias. Table 1 summarizes the advantages and disadvantages of cohort studies.

Study Subject Considerations
There are several considerations related to the subjects of a cohort study. These include selection of an appropriate sample of the population of interest, the sampling method that will be used, access to longitudinal data for the subjects chosen, and the sample size required to properly power the study. The criteria for inclusion and exclusion should be determined at the study design stage. The study subjects selected should be appropriate for the study question and should be generalizable to the population of interest. Avoiding bias
in subject selection, ensuring generalizability of the results, and determining the feasibility of performing an adequately powered study are crucial elements of the study design.

Sample size determination for cohort studies has been widely discussed in the literature.\(^{13-15}\) A comparison of incidence rates is usually the major aim of a cohort study. Assume that and \(p_1\) are the incidence rates of the end point of interest in the exposed and unexposed samples. The sample size is typically calculated based on the following statistical hypothesis:

\[
H_0 : p_1 = p_2 \ vs \ H_1 : p_1 \neq p_2
\]

The sample size formula can be found in Fleiss et al.\(^{16}\) For paired cohort studies or case-cohort designs, the formulae can be found in Kasiulevičius et al\(^{17}\) and Cai and Zeng.\(^9\) When the outcome of interest in a cohort study is continuous (although it is less common), we would like to compare the means of two cohorts. The formula based on the minimum detectable difference can be found in Woodward.\(^{18}\)

It is also important to consider subject loss to follow-up in designing a cohort study. Any sample size calculated should be inflated to account for the expected dropouts. For instance, if the dropout rate is expected to be 10%, the estimated sample size would be \(N\) multiplied by \(1/(1-0.1)\). A general discussion about sample size determination is presented in the article by Wang and Ji\(^{19}\) included in this supplemental issue of CHEST. As part of that article, an online calculator has been developed to help readers to perform the sample size estimation for cohort studies. It can be found at http://riskcalc.org:3838/samplesize/.

Statistical Considerations

Investigators often use cohorts to assess the association between multiple exposures and multiple outcomes over time and to build prognostic/prediction models. The modeling and analysis strategy could be sophisticated in cohort studies. Here we emphasize a few important aspects of statistical analysis.

Bias

Bias may be defined as any systematic error in a clinical study that results in an incorrect estimate of the true effect of an exposure on the outcome. A major source of potential bias in cohort studies is due to loss to follow-up. This occurs due to dropouts or death, which often occurs in studies with long follow-up durations. A general rule of thumb requires that the loss to follow-up rate does not exceed 20% of the sample.\(^{20}\) It is recommended that investigators examine any systematic differences related to the outcome and/or exposures between those who completed the study and those who were lost to follow-up. Methods of minimizing loss to follow-up in a prospective cohort study have been comprehensively discussed by Hulley et al.\(^{21}\) We suggest that the investigators report median follow-up for patients without the event or the number followed up without an event at a given follow-up time.

For example, consider the case of a cohort of 1,000

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Advantages and Disadvantages of Cohort Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>Can investigate multiple outcomes that may be associated with multiple exposures</td>
<td>Susceptible to loss to follow-up compared with cross-sectional studies</td>
</tr>
<tr>
<td>Able to study the change in exposure and outcome over time</td>
<td>Confounding variables are the major problem in analyzing the data compared with RCTs</td>
</tr>
<tr>
<td>Good for examining rare exposures</td>
<td></td>
</tr>
<tr>
<td>Can measure incidence of outcome</td>
<td></td>
</tr>
<tr>
<td>May be able to infer causality</td>
<td></td>
</tr>
<tr>
<td>Prospective Study</td>
<td>Retrospective Study</td>
</tr>
<tr>
<td>Able to control design, sampling, data collection, and follow-up methods</td>
<td>Time-efficient and inexpensive</td>
</tr>
<tr>
<td>Can measure all variables of interest</td>
<td>Easy to obtain large sample</td>
</tr>
<tr>
<td>Prospective Study</td>
<td>Retrospective Study</td>
</tr>
<tr>
<td>May be expensive to conduct</td>
<td>Less control over variables</td>
</tr>
<tr>
<td>Time-consuming</td>
<td>Susceptible to information bias and recall bias</td>
</tr>
</tbody>
</table>

RCTs = randomized controlled trials.
patients with COPD treated in 1970 and followed up until 2010. The median follow-up for all patients might be far less than the median follow-up for patients who survived. The latter statistic may provide a more accurate impression of how long the cohort had been followed up. Now assume that in 2009, a second cohort of 2,000 patients were added to the study. The median follow-up for survivors will now be around 1 year, which is again misleading. An alternative would be to report a statistic such as “312 patients have been followed up without a death event for at least 35 years.”

There are many other types of bias in clinical studies. Examples include allocation bias, prevalence-incidence bias, recall bias, and detection bias. In the accompanying cross-sectional study article included in this supplemental issue of CHEST, Wang and Cheng22 provide a detailed discussion regarding common types of biases and their definitions in clinical studies.

Confounding

Confounding often occurs in cohort studies. For a variable to be a confounder, it should meet three conditions: (1) be associated with the exposure being investigated; (2) be associated with the outcome being investigated; and (3) not be in the causal pathway between exposure and outcome. Confounding could result in a distortion of the effects; it may lead to overestimation or underestimation of an effect, or even reverse the direction of an effect. For example, a study found that alcohol consumption was associated with lung cancer. A person who drinks alcohol is more likely to smoke, and smoking is a risk factor for lung cancer. Controlling for the potential confounding effect of smoking may show that there is no association between alcohol consumption and lung cancer. Figure 3 shows the relation among the exposure, confounder, and outcome in this example.

Many statistical methods can be applied to control for confounding factors, both at the design stage and in the data analysis. The aim of controlling for confounding is to make the groups as similar as possible with respect to the confounders. At the design stage, restriction is a common method for controlling confounders. The investigators first identify potential confounding factors based on previous studies or the knowledge that confounding is biologically plausible. The investigators then limit participation in the study to individuals who are similar with respect to those confounders. For example, a lung cancer study restricted to smokers will eliminate any confounding effect of smoking. A drawback of this method is that it may be difficult to generalize the findings to the rest of the population.

At the analysis stage, stratification is one of the popular controlling methods. Stratification allows the association between exposure and outcome to be examined within different strata of the confounding variables. For example, a study is conducted to examine the association between lung cancer and exposure to asbestos. To control for smoking, the study population could be stratified according to smoking status. The association between exposure to asbestos and cancer can then be assessed separately within each stratum. An issue with stratifying is that strata with more individuals will tend to have a more precise estimate of the association (with a smaller SE) than strata with fewer individuals. For this reason, the Cochran-Mantel-Haenszel method is often used in stratification analysis. It allows calculating an overall and adjusted effect estimate of a given exposure for a specific outcome by combining (pooling with weight) stratum-specific relative risks or OR.23

Multivariable regression analysis is a model-based method to control for confounding. One builds a multivariable regression model for the outcome and exposure as well as other confounding variables. Based on the regression equation, the effect of the variable of interest can be examined with confounding variables held constant statistically. Multivariable regression has the advantage in that it can control simultaneously for more confounding variables than can stratification. It has the disadvantage in that this model may not fit the data well. The investigators have to be careful to use accepted variable selection procedures.

The propensity score method is also popular for controlling confounding.24 The propensity score is the probability of treatment/exposure assignment conditioned on observed baseline characteristics. It allows investigators to mimic some of the characteristics
of a randomized controlled trial in a cohort study. In practice, propensity score analysis involves a two-step procedure. The first stage of the analysis is to estimate the propensity score. We consider the exposure variable as the response variable and build a regression model with the variables that influence exposure group membership, such as sex and age. This model is used to give each subject a propensity score that measures the propensity (probability) to be exposed given the subject’s characteristics. In the second stage, the outcomes of interest are compared between exposed and unexposed following adjustment for propensity scores. There are different approaches on using propensity scoring but they all yield similar results: matching on the propensity score, stratification on the propensity score, inverse probability of treatment weighting using the propensity score, and covariate adjustment using the propensity score. Although propensity score methods are powerful, they involve sophisticated statistical techniques. A deep understanding of the methodology is necessary when implementing the specific analysis. There are other methods of controlling for confounding such as instrumental variable analysis and regression discontinuity design; details are provided in Merrill and Rothman et al. The application of directed acyclic graphs in observational studies assessing associations is described in a separate article included in this supplemental issue of CHEST (Etminan et al).

Model Building
Model building is often crucial in cohort studies. Investigators may need to build explanatory models or predictive models. In explanatory modeling, one is interested in identifying variables that have a scientifically meaningful and statistically significant relation with an outcome. In predictive modeling, the goal is to predict the probability of or the risk for the presence (diagnosis) or future occurrence (prognosis) of an outcome for an individual. When building a model (explanatory or predictive), the variables selected for inclusion should be based on the critical consideration of relevant literature or knowledge of medical experts. Use of stepwise selection should be restricted to a limited number of circumstances, such as during the initial stages of developing a model, or if there is poor knowledge of what variables might be predictive. Modern shrinkage or penalization procedures such as LASSO/least absolute shrinkage and selection operator, elastic net, and their variants are recommended for the study of rare events or when there are a large number of predictors. If predictive models are built, one should include some form of internal validation, such as cross-validation or bootstrapping, particularly in the situation that has no additional external validation performed. Controlling for confounding when building a prediction model is less common than that when modeling to assess for associations/causality. The article by Kattan and Gerds included in this supplemental issue of CHEST offers guidance on building prediction models.

Reporting Considerations
We suggest that investigators report their cohort studies following the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement, which contains a checklist of 22 items that are considered essential for reporting of observational studies. If multivariable prognostic prediction models are developed in a cohort study to be used in predicting future outcomes in individuals at risk, we recommend that investigators consult the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement.

Short List of Questions to Guide the Reviewer
When reviewing a cohort study, consider commenting on the following:

1. **The study cohort.** Was the study cohort well described? Was the method for selection of cohort members and the inclusion/exclusion criteria appropriate? Were there potential biases introduced by the methods chosen? Was the sample size adequate for the primary study question? How was subject dropout, death, and missing data handled?
2. **The exposures and outcomes.** Were they clearly defined? Are there concerns about the accuracy of their measurement? Were there potential biases introduced by the definitions and measurements?
3. **Potential confounders.** Were potential confounders identified based on prior knowledge? Were they properly controlled for in the study design and/or analysis? Are causal directed acyclic graphs included or required?
4. **The interpretation of the strength of the association(s) identified.** Were the measures used to describe the association between the exposure and the outcome clearly described and appropriate? Was the interpretation of the association(s) identified appropriate?
Acknowledgments

Financial/nonfinancial disclosures: None declared.

References