Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease

Will Cell-Specific Targeting Be the Key to the Cure?
Published:November 25, 2019DOI:https://doi.org/10.1016/j.chest.2019.11.009
      Chronic lung disease accounts for a significant global burden with respect to death, disability, and health-care costs. Due to the heterogeneous nature and limited treatment options for these diseases, it is imperative that the cellular and molecular mechanisms underlying the disease pathophysiology are further understood. The lung is a complex organ with a diverse cell population, and each cell type will likely have different roles in disease initiation, progression, and resolution. The effectiveness of a given therapeutic agent may depend on the net effect on each of these cell types. Over the past decade, it has been established that endoplasmic reticulum stress and the unfolded protein response are involved in the development of several chronic lung diseases. These conserved cellular pathways are important for maintaining cellular proteostasis, but their aberrant activation can result in pathology. This review discusses the current understanding of endoplasmic reticulum stress and the unfolded protein response at the cellular level in the development and progression of various chronic lung diseases. We highlight the need for increased understanding of the specific cellular contributions of unfolded protein response activation to these pathologies and suggest that the development of cell-specific targeted therapies is likely required to further decrease disease progression and to promote resolution of chronic lung disease.

      Key Words

      Abbreviations:

      AAT ( alpha1-antitrypsin), AECII ( alveolar epithelial type II cells), ATF6 ( activating transcription factor 6), CF ( cystic fibrosis), CFTR ( cystic fibrosis transmembrane conductance regulator), CHOP ( C/EBP homologous protein), ECM ( extracellular matrix), ER ( endoplasmic reticulum), GRP78 ( glucose-regulated protein 78), HIF-1α ( hypoxia-inducible factor-1α), HSP ( heat shock protein), IPF ( idiopathic pulmonary fibrosis), IRE1 ( inositol-requiring kinase 1), Nrf2 ( nuclear factor erythroid 2-related factor 2), PAH ( pulmonary arterial hypertension), PERK ( protein kinase RNA-like endoplasmic reticulum kinase), RNA-seq ( RNA-sequencing), SP-C ( surfactant protein C gene), UPR ( unfolded protein response), Z-AAT ( Z variant of alpha1-antitrypsin)
      To read this article in full you will need to make a payment
      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wei J.
        • Rahman S.
        • Ayaub E.A.
        • Dickhout J.G.
        • Ask K.
        Protein misfolding and endoplasmic reticulum stress in chronic lung disease.
        Chest. 2013; 143: 1098-1105
        • Hetz C.
        • Axten J.M.
        • Patterson J.B.
        Pharmacological targeting of the unfolded protein response for disease intervention.
        Nat Chem Biol. 2019; 15: 764-775
        • Thamsen M.
        • Ghosh R.
        • Auyeung V.C.
        • et al.
        Small molecule inhibition of IRE1α kinase/RNase has anti-fibrotic effects in the lung.
        PLoS One. 2019; 14e0209824
        • Hsu H.S.
        • Liu C.C.
        • Lin J.H.
        • et al.
        Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis.
        Sci Rep. 2017; 7: 14272
        • Zhao H.
        • Qin H.Y.
        • Cao L.F.
        • et al.
        Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis.
        Toxicol Lett. 2015; 232: 213-220
        • Tsubouchi K.
        • Araya J.
        • Minagawa S.
        • et al.
        Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4.
        Autophagy. 2017; 13: 1420-1434
        • Wang Y.C.
        • Dong J.
        • Nie J.
        • et al.
        Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition.
        Apoptosis. 2017; 22: 1147-1156
        • Zheng Q.
        • Tong M.
        • Ou B.
        • Liu C.
        • Hu C.
        • Yang Y.
        Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition.
        Int J Mol Med. 2019; 43: 117-126
        • Zhao H.
        • Wu Q.Q.
        • Cao L.F.
        • et al.
        Melatonin inhibits endoplasmic reticulum stress and epithelial-mesenchymal transition during bleomycin-induced pulmonary fibrosis in mice.
        PLoS One. 2014; 9e97266
        • Romero F.
        • Hong X.
        • Shah D.
        • et al.
        Lipid synthesis is required to resolve endoplasmic reticulum stress and limit fibrotic responses in the lung.
        Am J Respir Cell Mol Biol. 2018; 59: 225-236
        • Wang Y.
        • Wu Z.Z.
        • Wang W.
        Inhibition of endoplasmic reticulum stress alleviates cigarette smoke-induced airway inflammation and emphysema.
        Oncotarget. 2017; 8: 77685-77695
        • Tang Y.
        • Cai Q.H.
        • Wang Y.J.
        • et al.
        Protective effect of autophagy on endoplasmic reticulum stress induced apoptosis of alveolar epithelial cells in rat models of COPD.
        Biosci Rep. 2017; 37
        • Zhao Y.L.
        • Li F.
        • Liu Y.W.
        • et al.
        Adiponectin attenuates endoplasmic reticulum stress and alveolar epithelial apoptosis in COPD rats.
        Eur Rev Med Pharmacol Sci. 2017; 21: 4999-5007
        • Aggarwal S.
        • Ahmad I.
        • Lam A.
        • et al.
        Heme scavenging reduces pulmonary endoplasmic reticulum stress, fibrosis, and emphysema.
        JCI Insight. 2018; 3
        • Lin F.
        • Liao C.
        • Sun Y.
        • et al.
        Hydrogen sulfide inhibits cigarette smoke-induced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells.
        Front Pharmacol. 2017; 8: 675
        • Ding H.B.
        • Liu K.X.
        • Huang J.F.
        • Wu D.W.
        • Chen J.Y.
        • Chen Q.S.
        Protective effect of exogenous hydrogen sulfide on pulmonary artery endothelial cells by suppressing endoplasmic reticulum stress in a rat model of chronic obstructive pulmonary disease.
        Biomed Pharmacother. 2018; 105: 734-741
        • He B.
        • Zhang W.
        • Qiao J.
        • Peng Z.
        • Chai X.
        Melatonin protects against COPD by attenuating apoptosis and endoplasmic reticulum stress via upregulating SIRT1 expression in rats.
        Can J Physiol Pharmacol. 2019; 97: 386-391
        • Lin L.
        • Yin Y.
        • Hou G.
        • Han D.
        • Kang J.
        • Wang Q.
        Ursolic acid attenuates cigarette smoke-induced emphysema in rats by regulating PERK and Nrf2 pathways.
        Pulm Pharmacol Ther. 2017; 44: 111-121
        • Makhija L.
        • Krishnan V.
        • Rehman R.
        • et al.
        Chemical chaperones mitigate experimental asthma by attenuating endoplasmic reticulum stress.
        Am J Respir Cell Mol Biol. 2014; 50: 923-931
        • Wang X.
        • Yang X.
        • Li Y.
        • et al.
        Lyn kinase represses mucus hypersecretion by regulating IL-13-induced endoplasmic reticulum stress in asthma.
        EBioMedicine. 2017; 15: 137-149
        • Nakada E.M.
        • Bhakta N.R.
        • Korwin-Mihavics B.R.
        • et al.
        Conjugated bile acids attenuate allergen-induced airway inflammation and hyperresponsiveness by inhibiting UPR transducers.
        JCI Insight. 2019; 4
        • Siddesha J.M.
        • Nakada E.M.
        • Mihavics B.R.
        • et al.
        Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease.
        Am J Physiol Lung Cell Mol Physiol. 2016; 310: L1243-L1259
        • Fu T.
        • Wang L.
        • Zeng Q.
        • Zhang Y.
        • Sheng B.
        • Han L.
        Ghrelin ameliorates asthma by inhibiting endoplasmic reticulum stress.
        Am J Med Sci. 2017; 354: 617-625
        • Lu Y.
        • Xu J.Y.
        • Zhang X.H.
        • Zhao X.
        Gu-Ben-Fang-Xiao decoction attenuates sustained airway inflammation by suppressing ER stress response in a murine asthma remission model of respiratory syncytial virus infection.
        J Ethnopharmacol. 2016; 192: 496-509
        • Park S.H.
        • Gong J.H.
        • Choi Y.J.
        • Kang M.K.
        • Kim Y.H.
        • Kang Y.H.
        Kaempferol inhibits endoplasmic reticulum stress-associated mucus hypersecretion in airway epithelial cells and ovalbumin-sensitized mice.
        PLoS One. 2015; 10e0143526
        • Qin W.
        • Wu X.
        • Jia Y.
        • et al.
        Suhuang antitussive capsule inhibits NLRP3 inflammasome activation and ameliorates pulmonary dysfunction via suppression of endoplasmic reticulum stress in cough variant asthma.
        Biomed Pharmacother. 2019; 118: 109188
        • Boyle M.P.
        • Bell S.C.
        • Konstan M.W.
        • et al.
        A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial.
        Lancet Respir Med. 2014; 2: 527-538
        • Taylor-Cousar J.L.
        • Munck A.
        • McKone E.F.
        • et al.
        Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del.
        N Engl J Med. 2017; 377: 2013-2023
        • He Y.Y.
        • Liu C.L.
        • Li X.
        • Li R.J.
        • Wang L.L.
        • He K.L.
        Salubrinal attenuates right ventricular hypertrophy and dysfunction in hypoxic pulmonary hypertension of rats.
        Vasc Pharmacol. 2016; 87: 190-198
        • Dromparis P.
        • Paulin R.
        • Stenson T.H.
        • Haromy A.
        • Sutendra G.
        • Michelakis E.D.
        Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension.
        Circulation. 2013; 127: 115-125
        • Koyama M.
        • Furuhashi M.
        • Ishimura S.
        • et al.
        Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension.
        Am J Physiol Heart Circ Physiol. 2014; 306: H1314-H1323
        • Wu Y.
        • Adi D.
        • Long M.
        • et al.
        4-Phenylbutyric acid induces protection against pulmonary arterial hypertension in rats.
        PLoS One. 2016; 11e0157538
        • Chen R.
        • Zhong W.
        • Shao C.
        • et al.
        Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.
        Am J Physiol Lung Cell Mol Physiol. 2017; 314: L243-L255
        • Wu J.
        • Pan W.
        • Wang C.
        • et al.
        H2S attenuates endoplasmic reticulum stress in hypoxia-induced pulmonary artery hypertension.
        Biosci Rep. 2019; 39
        • Franks T.J.
        • Colby T.V.
        • Travis W.D.
        • et al.
        Resident cellular components of the human lung.
        Proc Am Thorac Soc. 2008; 5: 763-766
        • Kurland G.
        • Deterding R.R.
        • Hagood J.S.
        • et al.
        An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy.
        Am J Respir Crit Care Med. 2013; 188: 376-394
        • Lederer D.J.
        • Martinez F.J.
        Idiopathic pulmonary fibrosis.
        N Engl J Med. 2018; 378: 1811-1823
        • Raghu G.
        • Amatto V.C.
        • Behr J.
        • Stowasser S.
        Comorbidities in idiopathic pulmonary fibrosis patients: a systematic literature review.
        Eur Respir J. 2015; 46: 1113-1130
        • Mora A.L.
        • Rojas M.
        • Pardo A.
        • Selman M.
        Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease.
        Nat Rev Drug Discov. 2017; 16: 810
        • Burman A.
        • Tanjore H.
        • Blackwell T.S.
        Endoplasmic reticulum stress in pulmonary fibrosis.
        Matrix Biol. 2018; 68-69: 355-365
        • Dickens J.A.
        • Malzer E.
        • Chambers J.E.
        • Marciniak S.J.
        Pulmonary endoplasmic reticulum stress—scars, smoke, and suffocation.
        FEBS J. 2019; 286: 322-341
        • Koritzinsky M.
        • Levitin F.
        • Beucken T van den
        • et al.
        Two phases of disulfide bond formation have differing requirements for oxygen.
        J Cell Biol. 2013; 203: 615-627
        • Saibil H.
        Chaperone machines for protein folding, unfolding and disaggregation.
        Nat Rev Mol Cell Biol. 2013; 14: 630-642
        • Delbrel E.
        • Soumare A.
        • Naguez A.
        • et al.
        HIF-1α triggers ER stress and CHOP-mediated apoptosis in alveolar epithelial cells, a key event in pulmonary fibrosis.
        Sci Rep. 2018; 8: 17939
        • Burman A.
        • Kropski J.A.
        • Calvi C.L.
        • et al.
        Localized hypoxia links ER stress to lung fibrosis through induction of C/EBP homologous protein.
        JCI Insight. 2018; 3
        • Murray P.J.
        Macrophage polarization.
        Annu Rev Physiol. 2017; 79: 541-566
        • Ayaub E.A.
        • Kolb P.S.
        • Mohammed-Ali Z.
        • et al.
        GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis.
        J Pathol. 2016; 239: 411-425
        • Yao Y.
        • Wang Y.
        • Zhang Z.
        • et al.
        CHOP deficiency protects mice against bleomycin-induced pulmonary fibrosis by attenuating M2 macrophage production.
        Mol Ther. 2016; 24: 915-925
        • Ayaub E.A.
        • Tandon K.
        • Padwal M.
        • et al.
        IL-6 mediates ER expansion during hyperpolarization of alternatively activated macrophages.
        Immunol Cell Biol. 2019; 97: 203-217
        • Ayaub E.A.
        • Dubey A.
        • Imani J.
        • et al.
        Overexpression of OSM and IL-6 impacts the polarization of pro-fibrotic macrophages and the development of bleomycin-induced lung fibrosis.
        Sci Rep. 2017; 7: 13281
        • Marmai C.
        • Sutherland R.E.
        • Kim K.K.
        • et al.
        Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis.
        Am J Physiol Lung Cell Mol Physiol. 2011; 301: L71-L78
        • Heukels P.
        • van Hulst J.A.C.
        • van Nimwegen M.
        • et al.
        Fibrocytes are increased in lung and peripheral blood of patients with idiopathic pulmonary fibrosis.
        Respir Res. 2018; 19: 90
        • Heindryckx F.
        • Binet F.
        • Ponticos M.
        • et al.
        Endoplasmic reticulum stress enhances fibrosis through IRE1α-mediated degradation of miR-150 and XBP-1 splicing.
        EMBO Mol Med. 2016; 8: 729-744
        • Staab-Weijnitz C.A.
        • Fernandez I.E.
        • Knüppel L.
        • et al.
        FK506-binding protein 10, a potential novel drug target for idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2015; 192: 455-467
        • Otsuka M.
        • Shiratori M.
        • Chiba H.
        • et al.
        Treatment of pulmonary fibrosis with siRNA against a collagen-specific chaperone HSP47 in vitamin A-coupled liposomes.
        Exp Lung Res. 2017; 43: 271-282
        • Mulugeta S.
        • Nureki S.I.
        • Beers M.F.
        Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease.
        Am J Physiol Lung Cell Mol Physiol. 2015; 309: L507-L525
        • Nogee L.M.
        • Dunbar A.E.
        • Wert S.
        • Askin F.
        • Hamvas A.
        • Whitsett J.A.
        Mutations in the surfactant protein C gene associated with interstitial lung disease.
        Chest. 2002; 121: 20S-21S
        • Reyfman P.A.
        • Walter J.M.
        • Joshi N.
        • et al.
        Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis.
        Am J Respir Crit Care Med. 2019; 199: 1517-1536
        • Mulugeta S.
        • Nguyen V.
        • Russo S.J.
        • Muniswamy M.
        • Beers M.F.
        A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation.
        Am J Respir Cell Mol Biol. 2005; 32: 521-530
        • Maguire J.A.
        • Mulugeta S.
        • Beers M.F.
        Endoplasmic reticulum stress induced by surfactant protein C BRICHOS mutants promotes proinflammatory signaling by epithelial cells.
        Am J Respir Cell Mol Biol. 2011; 44: 404-414
        • Lawson W.E.
        • Cheng D.S.
        • Degryse A.L.
        • et al.
        Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs.
        Proc Natl Acad Sci U S A. 2011; 108: 10562-10567
        • Katzen J.
        • Wagner B.D.
        • Venosa A.
        • et al.
        An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis.
        JCI Insight. 2019; 4
        • Terzikhan N.
        • Verhamme K.M.C.
        • Hofman A.
        • Stricker B.H.
        • Brusselle G.G.
        • Lahousse L.
        Prevalence and incidence of COPD in smokers and non-smokers: the Rotterdam Study.
        Eur J Epidemiol. 2016; 31: 785-792
        • Barnes P.J.
        • Burney P.G.J.
        • Silverman E.K.
        • et al.
        Chronic obstructive pulmonary disease.
        Nature Rev Disease Primers. 2015; 1: 15076
        • Brenner D.R.
        • Boffetta P.
        • Duell E.J.
        • et al.
        Previous lung diseases and lung cancer risk: a pooled analysis from the International Lung Cancer Consortium.
        Am J Epidemiol. 2012; 176: 573-585
        • Fratta Pasini A.M.
        • Ferrari M.
        • Stranieri C.
        • et al.
        Nrf2 expression is increased in peripheral blood mononuclear cells derived from mild-moderate ex-smoker COPD patients with persistent oxidative stress.
        Int J Chron Obstruct Pulmon Dis. 2016; 11: 1733-1743
        • Tan S.
        • Jiang D.
        • Hu R.
        • et al.
        Endoplasmic reticulum stress induces HRD1 to protect alveolar type II epithelial cells from apoptosis induced by cigarette smoke extract.
        CPB. 2017; 43: 1337-1345
        • Kenche H.
        • Baty C.J.
        • Vedagiri K.
        • Shapiro S.D.
        • Blumental-Perry A.
        Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase.
        FASEB J. 2013; 27: 965-977
        • Somborac-Bacura A.
        • Toorn M van der
        • Franciosi L.
        • et al.
        Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells.
        Exp Physiol. 2013; 98: 316-325
        • Cominacini L.
        • Mozzini C.
        • Garbin U.
        • et al.
        Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases.
        Free Radical Biol Med. 2015; 88: 233-242
        • Yamada K.
        • Asai K.
        • Nagayasu F.
        • et al.
        Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking.
        BMC Pulm Med. 2016; 16: 27
        • Hoenderdos K.
        • Condliffe A.
        The neutrophil in chronic obstructive pulmonary disease. Too little, too late or too much, too soon?.
        Am J Respir Cell Mol Biol. 2013; 48: 531-539
        • Tanimura A.
        • Miyoshi K.
        • Horiguchi T.
        • Hagita H.
        • Fujisawa K.
        • Noma T.
        Mitochondrial activity and unfolded protein response are required for neutrophil differentiation.
        Cell Physiol Biochem. 2018; 47: 1936-1950
        • Qiu Q.
        • Zheng Z.
        • Chang L.
        • et al.
        Toll-like receptor-mediated IRE1α activation as a therapeutic target for inflammatory arthritis.
        EMBO J. 2013; 32: 2477-2490
        • Sanders K.A.
        • Delker D.A.
        • Huecksteadt T.
        • et al.
        RAGE is a critical mediator of pulmonary oxidative stress, alveolar macrophage activation and emphysema in response to cigarette smoke.
        Sci Rep. 2019; 9: 231
        • Marciniak S.J.
        • Ordóñez A.
        • Dickens J.A.
        • et al.
        New concepts in alpha-1 antitrypsin deficiency disease mechanisms.
        Ann Am Thorac Soc. 2016; 13: S289-S296
        • Luisetti M.
        • Seersholm N.
        Alpha1-antitrypsin deficiency. 1: epidemiology of alpha1-antitrypsin deficiency.
        Thorax. 2004; 59: 164-169
        • De Serres F.J.
        Alpha-1 antitrypsin deficiency is not a rare disease but a disease that is rarely diagnosed.
        Environ Health Perspect. 2003; 111: 1851-1854
        • Yang P.
        • Sun Z.
        • Krowka M.J.
        • et al.
        Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk.
        Arch Intern Med. 2008; 168: 1097-1103
        • van’t Wout E.F.A.
        • van Schadewijk A.
        • Savage N.D.L.
        • Stolk J.
        • Hiemstra P.S.
        α1-Antitrypsin production by proinflammatory and antiinflammatory macrophages and dendritic cells.
        Am J Respir Cell Mol Biol. 2012; 46: 607-613
        • McElvaney N.G.
        • Greene C.M.
        Mechanisms of protein misfolding in conformational lung diseases.
        Curr Mol Med. 2012; 12: 850-859
        • Smith S.E.
        • Granell S.
        • Salcedo-Sicilia L.
        • et al.
        Activating transcription factor 6 limits intracellular accumulation of mutant α(1)-antitrypsin Z and mitochondrial damage in hepatoma cells.
        J Biol Chem. 2011; 286: 41563-41577
        • Alam S.
        • Li Z.
        • Atkinson C.
        • Jonigk D.
        • Janciauskiene S.
        • Mahadeva R.
        Z α1-antitrypsin confers a proinflammatory phenotype that contributes to chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2014; 189: 909-931
        • Hassan T.
        • Carroll T.P.
        • Buckley P.G.
        • et al.
        miR-199a-5p silencing regulates the unfolded protein response in chronic obstructive pulmonary disease and α1-antitrypsin deficiency.
        Am J Respir Crit Care Med. 2014; 189: 263-273
        • Karadagi A.
        • Johansson H.
        • Zemack H.
        • et al.
        Exogenous alpha 1-antitrypsin down-regulates SERPINA1 expression.
        PLoS One. 2017; 12e0177279
        • Peters S.P.
        • Ferguson G.
        • Deniz Y.
        • Reisner C.
        Uncontrolled asthma: a review of the prevalence, disease burden and options for treatment.
        Respir Med. 2006; 100: 1139-1151
        • Qu Y.L.
        • Liu J.
        • Zhang L.X.
        • et al.
        Asthma and the risk of lung cancer: a meta-analysis.
        Oncotarget. 2017; 8: 11614-11620
        • Murphy D.M.
        • O’Byrne P.M.
        Recent advances in the pathophysiology of asthma.
        Chest. 2010; 137: 1417-1426
        • Moffatt M.F.
        • Kabesch M.
        • Liang L.
        • et al.
        Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma.
        Nature. 2007; 448: 470-473
        • Miller M.
        • Rosenthal P.
        • Beppu A.
        • et al.
        ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma.
        J Immunol. 2014; 192: 3475-3487
        • Lluis A.
        • Schedel M.
        • Liu J.
        • et al.
        Asthma-associated polymorphisms in 17q21 influence cord blood ORMDL3 and GSDMA gene expression and IL-17 secretion.
        J Allergy Clin Immunol. 2011; 127: 1587-1594.e6
        • Cheng Q.
        • Shang Y.
        ORMDL3 may participate in the pathogenesis of bronchial epithelial-mesenchymal transition in asthmatic mice with airway remodeling.
        Mol Med Rep. 2018; 17: 995-1005
        • Miller M.
        • Tam A.B.
        • Mueller J.L.
        • et al.
        Cutting edge: targeting epithelial ORMDL3 increases, rather than reduces, airway responsiveness and is associated with increased sphingosine-1-phosphate.
        J Immunol. 2017; 198: 3017-3022
        • Giembycz M.A.
        • Lindsay M.A.
        Pharmacology of the eosinophil.
        Pharmacol Rev. 1999; 51: 213-340
        • Bettigole S.E.
        • Lis R.
        • Adoro S.
        • et al.
        The transcription factor XBP1 is selectively required for eosinophil differentiation.
        Nat Immunol. 2015; 16: 829-837
        • Cutting G.R.
        Cystic fibrosis genetics: from molecular understanding to clinical application.
        Nat Rev Genet. 2015; 16: 45-56
        • Yamada A.
        • Komaki Y.
        • Komaki F.
        • Micic D.
        • Zullow S.
        • Sakuraba A.
        Risk of gastrointestinal cancers in patients with cystic fibrosis: a systematic review and meta-analysis.
        Lancet Oncol. 2018; 19: 758-767
        • Plasschaert L.W.
        • Žilionis R.
        • Choo-Wing R.
        • et al.
        A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte.
        Nature. 2018; 560: 377-381
        • Fang X.
        • Song Y.
        • Hirsch J.
        • et al.
        Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells.
        Am J Physiol Lung Cell Mol Physiol. 2006; 290: L242-L249
        • Ferec C.
        • Cutting G.R.
        Assessing the disease-liability of mutations in CFTR.
        Cold Spring Harb Perspect Med. 2012; 2a009480
        • Ren H.Y.
        • Grove D.E.
        • De La Rosa O.
        • et al.
        VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1.
        Mol Biol Cell. 2013; 24: 3016-3024
        • Mayer M.L.
        • Blohmke C.J.
        • Falsafi R.
        • et al.
        Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells.
        J Immunol. 2013; 190: 1227-1238
        • Birault V.
        • Solari R.
        • Hanrahan J.
        • Thomas D.Y.
        Correctors of the basic trafficking defect of the mutant F508del-CFTR that causes cystic fibrosis.
        Curr Opin Chem Biol. 2013; 17: 353-360
        • Ribeiro C.M.P.
        • Lubamba B.A.
        Role of IRE1α/XBP-1 in cystic fibrosis airway inflammation.
        Int J Mol Sci. 2017; 18
        • Lubamba B.A.
        • Jones L.C.
        • O’Neal W.K.
        • Boucher R.C.
        • Ribeiro C.M.P.
        X-box-binding protein 1 and innate immune responses of human cystic fibrosis alveolar macrophages.
        Am J Respir Crit Care Med. 2015; 192: 1449-1461
        • Tarique A.A.
        • Sly P.D.
        • Holt P.G.
        • et al.
        CFTR-dependent defect in alternatively-activated macrophages in cystic fibrosis.
        J Cyst Fibros. 2017; 16: 475-482
        • Lai Y.C.
        • Potoka K.C.
        • Champion H.C.
        • Mora A.L.
        • Gladwin M.T.
        Pulmonary arterial hypertension.
        Circ Res. 2014; 115: 115-130
        • Aguero J.
        • Ishikawa K.
        • Hadri L.
        • et al.
        Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model.
        Am J Physiol Heart Circ Physiol. 2014; 307: H1204-H1215
        • Masri F.A.
        • Xu W.
        • Comhair S.A.A.
        • et al.
        Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension.
        Am J Physiol Lung Cell Mol Physiol. 2007; 293: L548-L554
        • Hopper R.K.
        • Moonen J.R.A.J.
        • Diebold I.
        • et al.
        In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target slug.
        Circulation. 2016; 133: 1783-1794
        • Dinh-Xuan A.T.
        • Higenbottam T.W.
        • Clelland C.A.
        • et al.
        Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease.
        N Engl J Med. 1991; 324: 1539-1547
        • Naiel S.
        • Carlisle R.E.
        • Lu C.
        • Tat V.
        • Dickhout J.G.
        Endoplasmic reticulum stress inhibition blunts the development of essential hypertension in the spontaneously hypertensive rat.
        Am J Physiol Heart Circ Physiol. 2019; 316: H1214-H1223
        • Carlisle R.E.
        • Werner K.E.
        • Yum V.
        • et al.
        Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function.
        J Hypertens. 2016; 34: 1556-1569
        • Lenna S.
        • Townsend D.M.
        • Tan F.K.
        • et al.
        HLA-B35 upregulates endothelin-1 and downregulates endothelial nitric oxide synthase via endoplasmic reticulum stress response in endothelial cells.
        J Immunol. 2010; 184: 4654-4661
        • Chen A.
        • Chen A.
        • Liu J.
        • et al.
        FGF21 attenuates hypoxia-induced dysfunction and apoptosis in HPAECs through alleviating endoplasmic reticulum stress.
        Int J Mol Med. 2018; 42: 1684-1694
        • Yeager M.E.
        • Reddy M.B.
        • Nguyen C.M.
        • Colvin K.L.
        • Ivy D.D.
        • Stenmark K.R.
        Activation of the unfolded protein response is associated with pulmonary hypertension.
        Pulm Circ. 2012; 2: 229-240
        • Wang J.J.
        • Zuo X.R.
        • Xu J.
        • et al.
        Evaluation and treatment of endoplasmic reticulum (ER) stress in right ventricular dysfunction during monocrotaline-induced rat pulmonary arterial hypertension.
        Cardiovasc Drugs Ther. 2016; 30: 587-598
        • Sutendra G.
        • Dromparis P.
        • Wright P.
        • et al.
        The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension.
        Sci Transl Med. 2011; 3: 88ra55