Lung CT Densitometry in Idiopathic Pulmonary Fibrosis for the Prediction of Natural Course, Severity, and Mortality

Published:February 08, 2019DOI:https://doi.org/10.1016/j.chest.2019.01.019

      Background

      In this study, we retrospectively assessed the relationships among physiologic measurements, survival, and quantitative high-resolution CT (HRCT) scanning indexes in patients with idiopathic pulmonary fibrosis (IPF).

      Methods

      Seventy patients (48 male; mean [SD] age, 66.4 [9.0] years) with IPF were enrolled in the study. After segmentation of the lungs in thin-section CT scanning with the patient in the supine position at full inspiration, we assessed following parameters: mean lung attenuation (MLA), skewness, kurtosis, peak attenuation, total lung area, inflexion point with slope, and area right of the inflexion point (AROIP). Additionally, FVC, FEV 1, total lung capacity, diffusing capacity or transfer factor of the lung for carbon monoxide (D lco), and 6-min walk distance were analyzed. Univariate and multivariate analysis were used for the prediction of physiologic outcomes by HRCT scanning indexes and then were correlated to survival in a proportional hazards analysis.

      Results

      The strongest correlation was observed between MLA and FEV 1, with an r of −0.63. MLA, peak attenuation, slope, attenuation, and AROIP correlated negatively with all physiologic measurements. AROIP was the best predictor of D lco. Analysis for prediction of mortality showed that AROIP, kurtosis, and FVC were related significantly to survival. Multivariate regression revealed a significant impact of only AROIP (among age, sex, MLA, skewness, kurtosis, FVC, and D lco) on survival.

      Conclusions

      These data indicate that HRCT scanning indexes are correlated to physiologic measurements. The newly defined parameter, AROIP, is of additive value for prediction of outcome.

      Trial Registry

      ClinicalTrials.gov; No.: NCT02951416; URL: www.clinicaltrials.gov

      Key Words

      Abbreviations:

      6MWD ( 6-min walk distance), AROIP ( area right of the inflexion point), Dlco ( diffusing capacity or transfer factor of the lung for carbon monoxide), eurIPFreg ( European IPF Registry), HRCT ( high-resolution CT), HU ( Hounsfield units), IPF ( idiopathic pulmonary fibrosis), LAA ( low-attenuation area), MLA ( mean lung attenuation), PFT ( pulmonary function test), TLC ( total lung capacity), UIP ( usual interstitial pneumonia)
      To read this article in full you will need to make a payment
      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barratt S.L.
        • Creamer A.
        • Hayton C.
        • Chaudhuri N.
        Idiopathic pulmonary fibrosis (IPF): an overview.
        J Clin Med. 2018; 7
        • Guenther A.
        • Krauss E.
        • Tello S.
        • et al.
        The European IPF Registry (eurIPFreg): baseline characteristics and survival of patients with idiopathic pulmonary fibrosis.
        Respir Res. 2018; 19
        • Raghu G.
        • Rochwerg B.
        • Zhang Y.
        • et al.
        An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis—an update of the 2011 clinical practice guideline.
        Am J Respir Crit Care Med. 2015; 192: e3-e19
        • Witt S.
        • Krauss E.
        • Barbero M.A.N.
        • et al.
        Psychometric properties and minimal important differences of SF-36 in Idiopathic Pulmonary Fibrosis.
        Respir Res. 2019; 20: 47
        • Raghu G.
        • Remy-Jardin M.
        • Myers J.L.
        • et al.
        Diagnosis of idiopathic pulmonary fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline.
        Am J Respir Crit Care Med. 2018; 198: e44-e68
        • Chung J.H.
        • Goldin J.G.
        Interpretation of HRCT scans in the diagnosis of IPF: improving communication between pulmonologists and radiologists.
        Lung. 2018;
        • de Giacomi F.
        • White D.
        • Cox C.W.
        • Moua T.
        Evolution of diagnostic UIP computed tomography patterns in idiopathic pulmonary fibrosis: disease spectrum and implications for survival.
        Respir Med. 2018; 142: 53-59
        • Chung J.H.
        • Cox C.W.
        • Montner S.M.
        • et al.
        CT features of the usual interstitial pneumonia pattern: differentiating connective tissue disease-associated interstitial lung disease from idiopathic pulmonary fibrosis.
        AJR Am J Roentgenol. 2018; 210: 307-313
        • Behr J.
        Disease progression in idiopathic pulmonary fibrosis: FVC is not enough.
        Am J Respir Crit Care Med. 2017; 196: 1094-1095
        • Yoon H.Y.
        • Kim T.H.
        • Seo J.B.
        • et al.
        Effects of emphysema on physiological and prognostic characteristics of lung function in idiopathic pulmonary fibrosis.
        Respirology. 2018;
        • Humphries S.M.
        • Swigris J.J.
        • Brown K.K.
        • et al.
        Quantitative HRCT fibrosis score: performance characteristics in idiopathic pulmonary fibrosis.
        Eur Respir J. 2018;
        • Oda K.
        • Ishimoto H.
        • Yatera K.
        • et al.
        High-resolution CT scoring system-based grading scale predicts the clinical outcomes in patients with idiopathic pulmonary fibrosis.
        Respir Res. 2014; 15: 10
        • Sverzellati N.
        • Zompatori M.
        • de Luca G.
        • et al.
        Evaluation of quantitative CT indexes in idiopathic interstitial pneumonitis using a low-dose technique.
        Eur J Radiol. 2005; 56: 370-375
        • Guenther A.
        • Eickelberg O.
        • Preissner K.T.
        • et al.
        International registry for idiopathic pulmonary fibrosis.
        Thorax. 2008; 63 (author reply 841): 841
        • Lauri H.
        High-resolution CT of the lungs: indications and diagnosis.
        Duodecim. 2017; 133: 549-556
        • Ismail M.
        • Philbin J.
        Fast processing of digital imaging and communications in medicine (DICOM) metadata using multiseries DICOM format.
        J Med Imaging (Bellingham). 2015; 2: 26501
        • von Hippel PT
        Mean, median, and skew: correcting a textbook rule.
        J Stat Educ. 2005; 13: 187
        • Ohkubo H.
        • Taniguchi H.
        • Kondoh Y.
        • et al.
        A volumetric computed tomography analysis of the normal lung in idiopathic pulmonary fibrosis: the relationship with the survival.
        Intern Med. 2018; 57: 929-937
        • Fernández Fabrellas E.
        • Peris Sánchez R.
        • Sabater Abad C.
        • Juan Samper G.
        Prognosis and follow-up of idiopathic pulmonary fibrosis.
        Med Sci (Basel). 2018; 6
        • Kondoh Y.
        • Taniguchi H.
        • Kataoka K.
        • et al.
        Clinical spectrum and prognostic factors of possible UIP pattern on high-resolution CT in patients who underwent surgical lung biopsy.
        PLoS One. 2018; 13: e0193608
        • Nguyen-Kim T.D.L.
        • Maurer B.
        • Suliman Y.A.
        • Morsbach F.
        • Distler O.
        • Frauenfelder T.
        The impact of slice-reduced computed tomography on histogram-based densitometry assessment of lung fibrosis in patients with systemic sclerosis.
        J Thorac Dis. 2018; 10: 2142-2152
        • Günther A.
        • Korfei M.
        • Mahavadi P.
        • von der Beck D.
        • Ruppert C.
        • Markart P.
        Unravelling the progressive pathophysiology of idiopathic pulmonary fibrosis.
        Eur Respir Rev. 2012; 21: 152-160
        • Obert M.
        • Kampschulte M.
        • Limburg R.
        • Barańczuk S.
        • Krombach G.A.
        Quantitative computed tomography applied to interstitial lung diseases.
        Eur J Radiol. 2018; 100: 99-107
        • Oikonomou A.
        • Mintzopoulou P.
        • Tzouvelekis A.
        • et al.
        Pulmonary fibrosis and emphysema: is the emphysema type associated with the pattern of fibrosis?.
        World J Radiol. 2015; 7: 294-305
        • Okada M.
        • Kunihiro Y.
        • Nakashima Y.
        • et al.
        The low attenuation area on dual-energy perfusion CT: correlation with the pulmonary function tests and quantitative CT measurements.
        Eur J Radiol. 2012; 81: 2892-2899
        • Tanizawa K.
        • Handa T.
        • Nagai S.
        • et al.
        Clinical impact of high-attenuation and cystic areas on computed tomography in fibrotic idiopathic interstitial pneumonias.
        BMC Pulm Med. 2015; 15: 74
        • Lee H.Y.
        • Lee K.S.
        • Jeong Y.J.
        • et al.
        High-resolution CT findings in fibrotic idiopathic interstitial pneumonias with little honeycombing: serial changes and prognostic implications.
        AJR Am J Roentgenol. 2012; 199: 982-989
        • Jacob J.
        • Bartholmai B.J.
        • Rajagopalan S.
        • et al.
        Predicting outcomes in idiopathic pulmonary fibrosis using automated CT analysis.
        Am J Respir Crit Care Med. 2018;
        • Gay S.E.
        • Kazerooni E.A.
        • Toews G.B.
        • et al.
        Idiopathic pulmonary fibrosis: predicting response to therapy and survival.
        Am J Respir Crit Care Med. 1998; 157: 1063-1072
        • Egan J.J.
        • Martinez F.J.
        • Wells A.U.
        • Williams T.
        Lung function estimates in idiopathic pulmonary fibrosis: the potential for a simple classification.
        Thorax. 2005; 60: 270-273
        • Hubbard R.
        • Johnston I.
        • Britton J.
        Survival in patients with cryptogenic fibrosing alveolitis: a population-based cohort study.
        Chest. 1998; 113: 396-400
        • Collard H.R.
        • King T.E.
        • Bartelson B.B.
        • Vourlekis J.S.
        • Schwarz M.I.
        • Brown K.K.
        Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2003; 168: 538-542
        • Zhang L.J.
        • Lu G.M.
        • Meinel F.G.
        • McQuiston A.D.
        • Ravenel J.G.
        • Schoepf U.J.
        Computed tomography of acute pulmonary embolism: state-of-the-art.
        Eur Radiol. 2015; 25: 2547-2557
        • Kołodziej M.
        • de Veer M.J.
        • Cholewa M.
        • Egan G.F.
        • Thompson B.R.
        Lung function imaging methods in cystic fibrosis pulmonary disease.
        Respir Res. 2017; 18: 96
        • Sasihuseyinoglu A.S.
        • Altıntaş D.U.
        • Soyupak S.
        • et al.
        Evaluation of high resolution computed tomography findings of cystic fibrosis.
        Korean J Intern Med. 2018;
        • Kolb M.
        • Collard H.R.
        Staging of idiopathic pulmonary fibrosis: past, present and future.
        Eur Respir Rev. 2014; 23: 220-224