Atrial Fibrillation in the ICU

      Atrial fibrillation (AF) is the most common arrhythmia encountered in the ICU. Preexisting AF is highly prevalent among older patients with chronic conditions who are at risk for critical illness, whereas new-onset AF can be triggered by accelerated atrial remodeling and arrhythmogenic triggers encountered during critical illness. The acute loss of atrial systole and onset of rapid ventricular rates that characterize new-onset AF often lead to decreased cardiac output and hemodynamic compromise. Thus, new-onset AF is both a marker of disease severity as well as a likely contributor to poor outcomes, similar to other manifestations of organ dysfunction during critical illness. Evaluating immediate hemodynamic effects of new-onset AF during critical illness is an important component of rapid clinical assessment aimed at identifying patients in need of urgent direct current cardioversion, treatment of reversible inciting factors, and identification of patients who may benefit from pharmacologic rate or rhythm control. In addition to acute hemodynamic effects, new-onset AF during critical illness is associated with both short- and long-term increases in the risk of stroke, heart failure, and death, with AF recurrence rates of approximately 50% within 1 year following hospital discharge. In the absence of a strong evidence base, there is substantial practice variation in the choice of strategies for management of new-onset AF during critical illness. We describe acute and long-term evaluation and management strategies based on current evidence and propose future avenues of investigation to fill large knowledge gaps in the management of patients with AF during critical illness.

      Key Words

      Abbreviations:

      AF ( atrial fibrillation), AV ( atrioventricular), BB ( beta-blocker), CCB ( calcium channel blocker), CHA2DS2VASc ( congestive heart failure, hypertension, age ≥ 75 years, diabetes, previous stroke/transient ischemic attack, vascular disease, age 65 to 74 years, sex category ), DCCV ( direct current cardioversion), RVR ( rapid ventricular response), SR ( sinus rhythm)
      To read this article in full you will need to make a payment
      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lloyd-Jones D.M.
        • Wang T.J.
        • Leip E.P.
        • et al.
        Lifetime risk for development of atrial fibrillation: the Framingham Heart Study.
        Circulation. 2004; 110: 1042-1046
        • Benjamin E.J.
        • Wolf P.A.
        • D'Agostino R.B.
        • Silbershatz H.
        • Kannel W.B.
        • Levy D.
        Impact of atrial fibrillation on the risk of death: the Framingham Heart Study.
        Circulation. 1998; 98: 946-952
        • Wolf P.A.
        • Dawber T.R.
        • Thomas Jr., H.E.
        • Kannel W.B.
        Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study.
        Neurology. 1978; 28: 973-977
        • Santhanakrishnan R.
        • Wang N.
        • Larson M.G.
        • et al.
        Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction.
        Circulation. 2016; 133: 484-492
        • Moss T.J.
        • Calland J.F.
        • Enfield K.B.
        • et al.
        New-onset atrial fibrillation in the critically ill.
        Crit Care Med. 2017; 45: 790-797
        • Artucio H.
        • Pereira M.
        Cardiac arrhythmias in critically ill patients: epidemiologic study.
        Crit Care Med. 1990; 18: 1383-1388
        • Aldhoon B.
        • Melenovsky V.
        • Peichl P.
        • Kautzner J.
        New insights into mechanisms of atrial fibrillation.
        Physiol Res. 2010; 59: 1-12
        • Yue L.
        • Feng J.
        • Gaspo R.
        • Li G.R.
        • Wang Z.
        • Nattel S.
        Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation.
        Circ Res. 1997; 81: 512-525
        • Schotten U.
        • Verheule S.
        • Kirchhof P.
        • Goette A.
        Pathophysiological mechanisms of atrial fibrillation: a translational appraisal.
        Physiol Rev. 2011; 91: 265-325
        • Krijthe B.P.
        • Heeringa J.
        • Kors J.A.
        • et al.
        Serum potassium levels and the risk of atrial fibrillation: the Rotterdam Study.
        Int J Cardiol. 2013; 168: 5411-5415
        • Lu Y.Y.
        • Cheng C.C.
        • Chen Y.C.
        • Lin Y.K.
        • Chen S.A.
        • Chen Y.J.
        Electrolyte disturbances differentially regulate sinoatrial node and pulmonary vein electrical activity: a contribution to hypokalemia- or hyponatremia-induced atrial fibrillation.
        Heart Rhythm. 2016; 13: 781-788
        • Khan A.M.
        • Lubitz S.A.
        • Sullivan L.M.
        • et al.
        Low serum magnesium and the development of atrial fibrillation in the community: the Framingham Heart Study.
        Circulation. 2013; 127: 33-38
        • Wijffels M.C.
        • Kirchhof C.J.
        • Dorland R.
        • Allessie M.A.
        Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats.
        Circulation. 1995; 92: 1954-1968
        • Kannel W.B.
        • Abbott R.D.
        • Savage D.D.
        • McNamara P.M.
        Epidemiologic features of chronic atrial fibrillation: the Framingham study.
        N Engl J Med. 1982; 306: 1018-1022
        • Brown A.O.
        • Orihuela C.J.
        Visualization of Streptococcus pneumoniae within cardiac microlesions and subsequent cardiac remodeling.
        J Vis Exp. 2015;
        • Brown A.O.
        • Mann B.
        • Gao G.
        • et al.
        Streptococcus pneumoniae translocates into the myocardium and forms unique microlesions that disrupt cardiac function.
        PLoS Pathog. 2014; 10: e1004383
        • Reyes L.F.
        • Restrepo M.I.
        • Hinojosa C.A.
        • et al.
        Severe pneumococcal pneumonia causes acute cardiac toxicity and subsequent cardiac remodeling.
        Am J Respir Crit Care Med. 2017; 196: 609-620
        • Watanabe H.
        • Ma M.
        • Washizuka T.
        • et al.
        Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium.
        Biochem Biophys Res Commun. 2003; 308: 439-444
        • Klein Klouwenberg P.M.
        • Frencken J.F.
        • Kuipers S.
        • et al.
        Incidence, predictors, and outcomes of new-onset atrial fibrillation in critically ill patients with sepsis a cohort study.
        Am J Respir Crit Care Med. 2017; 195: 205-211
        • Frustaci A.
        • Chimenti C.
        • Bellocci F.
        • Morgante E.
        • Russo M.A.
        • Maseri A.
        Histological substrate of atrial biopsies in patients with lone atrial fibrillation.
        Circulation. 1997; 96: 1180-1184
        • Mihm M.J.
        • Yu F.
        • Carnes C.A.
        • et al.
        Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation.
        Circulation. 2001; 104: 174-180
        • Wang T.J.
        • Parise H.
        • Levy D.
        • et al.
        Obesity and the risk of new-onset atrial fibrillation.
        JAMA. 2004; 292: 2471-2477
        • Jacob K.A.
        • Nathoe H.M.
        • Dieleman J.M.
        • van Osch D.
        • Kluin J.
        • van Dijk D.
        Inflammation in new-onset atrial fibrillation after cardiac surgery: a systematic review.
        Eur J Clin Invest. 2014; 44: 402-428
        • Seguin P.
        • Laviolle B.
        • Maurice A.
        • Leclercq C.
        • Mallédant Y.
        Atrial fibrillation in trauma patients requiring intensive care.
        Intensive Care Med. 2006; 32: 398-404
        • Walkey A.J.
        • Wiener R.S.
        • Ghobrial J.M.
        • Curtis L.H.
        • Benjamin E.J.
        Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis.
        JAMA. 2011; 306: 2248-2254
        • Walkey A.J.
        • Greiner M.A.
        • Heckbert S.R.
        • et al.
        Atrial fibrillation among Medicare beneficiaries hospitalized with sepsis: incidence and risk factors.
        Am Heart J. 2013; 165: 949-955.e943
        • Vieillard-Baron A.
        • Boyd J.
        Non-antiarrhythmic interventions in new onset and paroxysmal sepsis-related atrial fibrillation.
        Intensive Care Med. 2017;
        • Seemann A.
        • Boissier F.
        • Razazi K.
        • et al.
        New-onset supraventricular arrhythmia during septic shock: prevalence, risk factors and prognosis.
        Annals of Intensive Care. 2015; 5
        • Shaver C.M.
        • Chen W.
        • Janz D.R.
        • et al.
        Atrial Fibrillation Is an Independent Predictor of Mortality in Critically Ill Patients.
        Crit Care Med. 2015; 43: 2104-2111
        • Landesberg G.
        • Gilon D.
        • Meroz Y.
        • et al.
        Diastolic dysfunction and mortality in severe sepsis and septic shock.
        Eur Heart J. 2012; 33: 895-903
        • Clark D.M.
        • Plumb V.J.
        • Epstein A.E.
        • Kay G.N.
        Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation.
        J Am Coll Cardiol. 1997; 30: 1039-1045
        • Kanji S.
        • Williamson D.R.
        • Yaghchi B.M.
        • Albert M.
        • McIntyre L.
        Epidemiology and management of atrial fibrillation in medical and noncardiac surgical adult intensive care unit patients.
        J Crit Care. 2012; 27: 326.e321-326.e328
        • Chen A.Y.
        • Sokol S.S.
        • Kress J.P.
        • Lat I.
        New-onset atrial fibrillation is an independent predictor of mortality in medical intensive care unit patients.
        Ann Pharmacother. 2015; 49: 523-527
        • Walkey A.J.
        • McManus D.
        When rhythm changes cause the blues: new-onset atrial fibrillation during sepsis.
        Am J Respir Crit Care Med. 2017; 195: 152-154
        • Meierhenrich R.
        • Steinhilber E.
        • Eggermann C.
        • et al.
        Incidence and prognostic impact of new-onset atrial fibrillation in patients with septic shock: a prospective observational study.
        Crit Care. 2010; 14: R108
        • Fuster V.
        • Ryden L.E.
        • Asinger R.W.
        • et al.
        ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation: executive summary a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the Management of Patients With Atrial Fibrillation) Developed in Collaboration With the North American Society of Pacing and Electrophysiology.
        Circulation. 2001; 104: 2118-2150
        • Walkey A.J.
        • Hammill B.G.
        • Curtis L.H.
        • Benjamin E.J.
        Long-term outcomes following development of new-onset atrial fibrillation during sepsis.
        Chest. 2014; 146: 1187-1195
        • January C.T.
        • Wann L.S.
        • Alpert J.S.
        • et al.
        2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society.
        J Am Coll Cardiol. 2014; 64: e1-e76
        • Arrigo M.
        • Jaeger N.
        • Seifert B.
        • Spahn D.R.
        • Bettex D.
        • Rudiger A.
        Disappointing Success of Electrical Cardioversion for New-Onset Atrial Fibrillation in Cardiosurgical ICU Patients.
        Crit Care Med. 2015; 43: 2354-2359
        • Abrams J.
        • Allen J.
        • Allin D.
        • et al.
        Efficacy and safety of esmolol vs propranolol in the treatment of supraventricular tachyarrhythmias: a multicenter double-blind clinical trial.
        Am Heart J. 1985; 110: 913-922
        • Ang E.L.
        • Chan W.L.
        • Cleland J.G.
        • et al.
        Placebo controlled trial of xamoterol versus digoxin in chronic atrial fibrillation.
        Br Heart J. 1990; 64: 256-260
        • Rathore S.S.
        • Curtis J.P.
        • Wang Y.
        • Bristow M.R.
        • Krumholz H.M.
        Association of serum digoxin concentration and outcomes in patients with heart failure.
        Jama. 2003; 289: 871-878
        • Eisen A.
        • Ruff C.T.
        • Braunwald E.
        • et al.
        Digoxin Use and Subsequent Clinical Outcomes in Patients With Atrial Fibrillation With or Without Heart Failure in the ENGAGE AF-TIMI 48 Trial.
        Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease. 2017; 6: e006035
        • Davey M.J.
        • Teubner D.
        A randomized controlled trial of magnesium sulfate, in addition to usual care, for rate control in atrial fibrillation.
        Ann Emerg Med. 2005; 45: 347-353
        • Zimetbaum P.
        Antiarrhythmic drug therapy for atrial fibrillation.
        Circulation. 2012; 125: 381-389
        • Delle Karth G.
        • Geppert A.
        • Neunteufl T.
        • et al.
        Amiodarone versus diltiazem for rate control in critically ill patients with atrial tachyarrhythmias.
        Crit Care Med. 2001; 29: 1149-1153
        • Hou Z.Y.
        • Chang M.S.
        • Chen C.Y.
        • et al.
        Acute treatment of recent-onset atrial fibrillation and flutter with a tailored dosing regimen of intravenous amiodarone. A randomized, digoxin-controlled study.
        Eur Heart J. 1995; 16: 521-528
        • Ott M.C.
        • Khoor A.
        • Leventhal J.P.
        • Paterick T.E.
        • Burger C.D.
        Pulmonary toxicity in patients receiving low-dose amiodarone.
        Chest. 2003; 123: 646-651
        • Chean C.S.
        • McAuley D.
        • Gordon A.
        • Welters I.D.
        Current practice in the management of new-onset atrial fibrillation in critically ill patients: A UK-wide survey.
        PeerJ. 2017; 2017
        • Walkey A.J.
        • Evans S.R.
        • Winter M.R.
        • Benjamin E.J.
        Practice patterns and outcomes of treatments for atrial fibrillation during sepsis a propensity-matched cohort study.
        Chest. 2016; 149: 74-83
        • Moskowitz A.
        • Chen K.P.
        • Cooper A.Z.
        • Chahin A.
        • Ghassemi M.M.
        • Celi L.A.
        Management of Atrial Fibrillation with Rapid Ventricular Response in the Intensive Care Unit: A Secondary Analysis of Electronic Health Record Data.
        Shock. 2017; 48: 436-440
        • Morelli A.
        • Singer M.
        • Ranieri V.M.
        • et al.
        Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: a prospective observational study.
        Intensive Care Med. 2016; 42: 1528-1534
        • Morelli A.
        • Ertmer C.
        • Westphal M.
        • et al.
        Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial.
        Jama. 2013; 310: 1683-1691
        • Siu C.W.
        • Lau C.P.
        • Lee W.L.
        • Lam K.F.
        • Tse H.F.
        Intravenous diltiazem is superior to intravenous amiodarone or digoxin for achieving ventricular rate control in patients with acute uncomplicated atrial fibrillation.
        Crit Care Med. 2009; 37 (quiz 2180): 2174-2179
        • Onalan O.
        • Crystal E.
        • Daoulah A.
        • Lau C.
        • Crystal A.
        • Lashevsky I.
        Meta-analysis of magnesium therapy for the acute management of rapid atrial fibrillation.
        Am J Cardiol. 2007; 99: 1726-1732
      1. Esmolol Hydrochloride. Micromedex Solutions Truven Health Analytics, Inc. http://www.micromedexsolutions.com. Accessed March 5, 2018.

        • Platia E.V.
        • Michelson E.L.
        • Porterfield J.K.
        • Das G.
        Esmolol versus verapamil in the acute treatment of atrial fibrillation or atrial flutter.
        Am J Cardiol. 1989; 63: 925-929
      2. Metoprolol tartrate. Micromedex Solutions Truven Health Analytics, Inc. http://www.micromedexsolutions.com. Accessed March 5, 2018.

        • Amsterdam E.A.
        • Kulcyski J.
        • Ridgeway M.G.
        Efficacy of cardioselective beta-adrenergic blockade with intravenously administered metoprolol in the treatment of supraventricular tachyarrhythmias.
        J Clin Pharmacol. 1991; 31: 714-718
      3. Diltiazem hydrochloride. Micromedex Solutions Truven Health Analytics, Inc. http://www.micromedexsolutions.com. Accessed March 5, 2018.

      4. Verapamil hydrochloride. http://www.micromedexsolutions.com. Accessed March 5, 2018.

      5. Digoxin. http://www.micromedexsolutions.com. Accessed March 6, 2018.

      6. Amiodarone hydrochloride. http://www.micromedexsolutions.com. Accessed March 5, 2018.

        • Clemo H.F.
        • Wood M.A.
        • Gilligan D.M.
        • Ellenbogen K.A.
        Intravenous amiodarone for acute heart rate control in the critically ill patient with atrial tachyarrhythmias.
        Am J Cardiol. 1998; 81: 594-598
        • Cybulski J.
        • Kulakowski P.
        • Budaj A.
        • et al.
        Intravenous amiodarone for cardioversion of recent-onset atrial fibrillation.
        Clin Cardiol. 2003; 26: 329-335
        • Ho K.M.
        • Sheridan D.J.
        • Paterson T.
        Use of intravenous magnesium to treat acute onset atrial fibrillation: a meta-analysis.
        Heart. 2007; 93: 1433-1440
      7. Magnesium sulfate. http://www.micromedexsolutions.com. Accessed March 6, 2018.

        • Resnekov L.
        • McDonald L.
        Complications in 220 patients with cardiac dysrhythmias treated by phased direct current shock, and indications for electroconversion.
        Br Heart J. 1967; 29: 926-936
        • Walkey A.J.
        • Quinn E.K.
        • Winter M.R.
        • McManus D.D.
        • Benjamin E.J.
        Practice patterns and outcomes associated with use of anticoagulation among patients with atrial fibrillation during sepsis.
        JAMA Cardiol. 2016; 1: 682-690
      8. Lip GY, Lane DA. Modern management of atrial fibrillation requires initial identification of "low-risk" patients using the CHA2DS2-VASc score, and not focusing on "high-risk" prediction. Circ J. Vol. 78. Japan2014:1843-1845.

        • Walkey A.J.
        • Hogarth K.
        • Lip G.Y.H.
        Optimizing atrial fibrillation management from ICU and beyond.
        Chest. 2015; 148: 859-864
        • Sanna T.
        • Diener H.C.
        • Passman R.S.
        • et al.
        Cryptogenic stroke and underlying atrial fibrillation.
        N Engl J Med. 2014; 370: 2478-2486
        • Launey Y.
        • Lasocki S.
        • Asehnoune K.
        • et al.
        Impact of low-dose hydrocortisone on the incidence of atrial fibrillation in patients with septic shock.
        J Intensive Care Med. 2017; (885066617696847)
        • Frendl G.
        • Sodickson A.C.
        • Chung M.K.
        • et al.
        2014 AATS guidelines for the prevention and management of peri-operative atrial fibrillation and flutter (POAF) for thoracic surgical procedures.
        J Thoracic Cardiovasc Surg. 2014; 148: e153-e193
        • National Institutes of Health Clinical Center
        Magnesium sulphate for treatment of new onset atrial fibrillation in medical intensive care unit patient (EMSAF). NCT01049464. ClinicalTrials.gov.
        National Institutes of Health, Bethesda, MD2018 (Updated March 29, 2016)
        • National Institutes of Health Clinical Center
        Use of amiodarone in atrial fibrillation associated with severe sepsis or septic shock. NCT02668432. ClinicalTrials.gov.
        National Institutes of Health, Bethesda, MD2018 (Updated May 30, 2017)