Advertisement
Postgraduate Education Corner Contemporary Reviews in Sleep Medicine| Volume 139, ISSUE 2, P446-452, February 01, 2011

Genome-Wide Association Studies of Sleep Disorders

      Sleep disorders tend to be complex diseases, with multiple genes and environmental factors interacting to contribute to phenotypes. Our understanding of the genetic underpinnings of sleep disorders has benefited from recent genome-wide association studies (GWAS). We review principles underlying GWAS and discuss recent GWAS for restless legs syndrome and narcolepsy. These studies have identified four gene variants associated with restless legs syndrome (BTBD9, MEIS1, MAP2K5/LBXCOR1, and PTPRD) and two variants associated with narcolepsy (one in the T-cell receptor α locus and another between CPT1B and CHKB). These discoveries have opened new lines of research to understand the pathophysiology of these disorders. In addition to GWAS, we expect that new technologies, such as next-generation sequencing, and continued use of animal models will provide important contributions to our understanding of the genetic basis of sleep disorders.
      To read this article in full you will need to make a payment
      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lander ES
        • Linton LM
        • Birren B
        • International Human Genome Sequencing Consortium
        • et al.
        Initial sequencing and analysis of the human genome.
        Nature. 2001; 409: 860-921
        • Venter JC
        • Adams MD
        • Myers EW
        • et al.
        The sequence of the human genome.
        Science. 2001; 291: 1304-1351
        • International HapMap Consortium
        The International HapMap Project.
        Nature. 2003; 426: 789-796
        • Schuster SC
        Next-generation sequencing transforms today's biology.
        Nat Methods. 2008; 5: 16-18
        • Pettersson E
        • Lundeberg J
        • Ahmadian A
        Generations of sequencing technologies.
        Genomics. 2009; 93: 105-111
        • Chemelli RM
        • Willie JT
        • Sinton CM
        • et al.
        Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation.
        Cell. 1999; 98: 437-451
        • Lin L
        • Faraco J
        • Li R
        • et al.
        The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene.
        Cell. 1999; 98: 365-376
        • Peyron C
        • Faraco J
        • Rogers W
        • et al.
        A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains.
        Nat Med. 2000; 6: 991-997
        • Saper CB
        • Scammell TE
        • Lu J
        Hypothalamic regulation of sleep and circadian rhythms.
        Nature. 2005; 437: 1257-1263
        • Nishino S
        • Ripley B
        • Overeem S
        • et al.
        Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy.
        Ann Neurol. 2001; 50: 381-388
        • Brisbare-Roch C
        • Dingemanse J
        • Koberstein R
        • et al.
        Promotion of sleep by targeting the orexin system in rats, dogs and humans.
        Nat Med. 2007; 13: 150-155
        • Neubauer DN
        Almorexant, a dual orexin receptor antagonist for the treatment of insomnia.
        Curr Opin Investig Drugs. 2010; 11: 101-110
        • Mignot E
        Sleep, sleep disorders and hypocretin (orexin).
        Sleep Med. 2004; 5: S2-S8
        • Trenkwalder C
        • Högl B
        • Winkelmann J
        Recent advances in the diagnosis, genetics and treatment of restless legs syndrome.
        J Neurol. 2009; 256: 539-553
        • Raizen DM
        • Mason TB
        • Pack AI
        Genetic basis for sleep regulation and sleep disorders.
        Semin Neurol. 2006; 26: 467-483
        • Bamne MN
        • Mansour H
        • Monk TH
        • Buysse DJ
        • Nimgaonkar VL
        Approaches to unravel the genetics of sleep.
        Sleep Med Rev. 2010; 14: 397-404
        • Tafti M
        Genetic aspects of normal and disturbed sleep.
        Sleep Med. 2009; 10: S17-S21
        • Mignot E
        Genetic and familial aspects of narcolepsy.
        Neurology. 1998; 50: S16-S22
        • Ondo WG
        • Vuong KD
        • Wang Q
        Restless legs syndrome in monozygotic twins: clinical correlates.
        Neurology. 2000; 55: 1404-1406
        • Xiong L
        • Jang K
        • Montplaisir J
        • et al.
        Canadian restless legs syndrome twin study.
        Neurology. 2007; 68: 1631-1633
        • Heath AC
        • Kendler KS
        • Eaves LJ
        • Martin NG
        Evidence for genetic influences on sleep disturbance and sleep pattern in twins.
        Sleep. 1990; 13: 318-335
        • McCarren M
        • Goldberg J
        • Ramakrishnan V
        • Fabsitz R
        Insomnia in Vietnam era veteran twins: influence of genes and combat experience.
        Sleep. 1994; 17: 456-461
        • Watson NF
        • Goldberg J
        • Arguelles L
        • Buchwald D
        Genetic and environmental influences on insomnia, daytime sleepiness, and obesity in twins.
        Sleep. 2006; 29: 645-649
        • Hardy J
        • Singleton A
        Genomewide association studies and human disease.
        N Engl J Med. 2009; 360: 1759-1768
        • Mullen SA
        • Crompton DE
        • Carney PW
        • Helbig I
        • Berkovic SF
        A neurologist's guide to genome-wide association studies.
        Neurology. 2009; 72: 558-565
        • Cirulli ET
        • Goldstein DB
        Uncovering the roles of rare variants in common disease through whole-genome sequencing.
        Nat Rev Genet. 2010; 11: 415-425
        • Price AL
        • Zaitlen NA
        • Reich D
        • Patterson N
        New approaches to population stratification in genome-wide association studies.
        Nat Rev Genet. 2010; 11: 459-463
        • Klein RJ
        • Zeiss C
        • Chew EY
        • et al.
        Complement factor H polymorphism in age-related macular degeneration.
        Science. 2005; 308: 385-389
        • Haines JL
        • Hauser MA
        • Schmidt S
        • et al.
        Complement factor H variant increases the risk of age-related macular degeneration.
        Science. 2005; 308: 419-421
        • Edwards AO
        • Ritter III, R
        • Abel KJ
        • Manning A
        • Panhuysen C
        • Farrer LA
        Complement factor H polymorphism and age-related macular degeneration.
        Science. 2005; 308: 421-424
        • Manolio TA
        • Collins FS
        • Cox NJ
        • et al.
        Finding the missing heritability of complex diseases.
        Nature. 2009; 461: 747-753
        • Goldstein DB
        Common genetic variation and human traits.
        N Engl J Med. 2009; 360: 1696-1698
        • Desautels A
        • Turecki G
        • Montplaisir J
        • Sequeira A
        • Verner A
        • Rouleau GA
        Identification of a major susceptibility locus for restless legs syndrome on chromosome 12q.
        Am J Hum Genet. 2001; 69: 1266-1270
        • Bonati MT
        • Ferini-Strambi L
        • Aridon P
        • Oldani A
        • Zucconi M
        • Casari G
        Autosomal dominant restless legs syndrome maps on chromosome 14q.
        Brain. 2003; 126: 1485-1492
        • Chen S
        • Ondo WG
        • Rao S
        • Li L
        • Chen Q
        • Wang Q
        Genomewide linkage scan identifies a novel susceptibility locus for restless legs syndrome on chromosome 9p.
        Am J Hum Genet. 2004; 74: 876-885
        • Pichler I
        • Marroni F
        • Volpato CB
        • et al.
        Linkage analysis identifies a novel locus for restless legs syndrome on chromosome 2q in a South Tyrolean population isolate.
        Am J Hum Genet. 2006; 79: 716-723
        • Levchenko A
        • Provost S
        • Montplaisir JY
        • et al.
        A novel autosomal dominant restless legs syndrome locus maps to chromosome 20p13.
        Neurology. 2006; 67: 900-901
        • Kemlink D
        • Plazzi G
        • Vetrugno R
        • et al.
        Suggestive evidence for linkage for restless legs syndrome on chromosome 19p13.
        Neurogenetics. 2008; 9: 75-82
        • Stefansson H
        • Rye DB
        • Hicks A
        • et al.
        A genetic risk factor for periodic limb movements in sleep.
        N Engl J Med. 2007; 357: 639-647
        • Nordlander NB
        Therapy in restless legs.
        Acta Med Scand. 1953; 145: 453-457
        • Ekbom KA
        Restless legs syndrome.
        Neurology. 1960; 10: 868-873
        • Winkelmann J
        • Schormair B
        • Lichtner P
        • et al.
        Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions.
        Nat Genet. 2007; 39: 1000-1006
        • Mercader N
        • Leonardo E
        • Azpiazu N
        • et al.
        Conserved regulation of proximodistal limb axis development by Meis1/Hth.
        Nature. 1999; 402: 425-429
        • Mizuhara E
        • Nakatani T
        • Minaki Y
        • Sakamoto Y
        • Ono Y
        Corl1, a novel neuronal lineage-specific transcriptional corepressor for the homeodomain transcription factor Lbx1.
        J Biol Chem. 2005; 280: 3645-3655
        • Xiong L
        • Catoire H
        • Dion P
        • et al.
        MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels.
        Hum Mol Genet. 2009; 18: 1065-1074
        • Vilariño-Güell C
        • Farrer MJ
        • Lin SC
        A genetic risk factor for periodic limb movements in sleep.
        N Engl J Med. 2008; 358: 425-427
        • Kemlink D
        • Polo O
        • Frauscher B
        • et al.
        Replication of restless legs syndrome loci in three European populations.
        J Med Genet. 2009; 46: 315-318
        • Schormair B
        • Kemlink D
        • Roeske D
        • et al.
        PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome.
        Nat Genet. 2008; 40: 946-948
        • Liebetanz KM
        • Winkelmann J
        • Trenkwalder C
        • et al.
        RLS3: fine-mapping of an autosomal dominant locus in a family with intrafamilial heterogeneity.
        Neurology. 2006; 67: 320-321
        • Kemlink D
        • Polo O
        • Montagna P
        • et al.
        Family-based association study of the restless legs syndrome loci 2 and 3 in a European population.
        Mov Disord. 2007; 22: 207-212
        • Lohmann-Hedrich K
        • Neumann A
        • Kleensang A
        • et al.
        Evidence for linkage of restless legs syndrome to chromosome 9p: are there two distinct loci?.
        Neurology. 2008; 70: 686-694
        • Winkelmann J
        • Lichtner P
        • Schormair B
        • et al.
        Variants in the neuronal nitric oxide synthase (nNOS, NOS1) gene are associated with restless legs syndrome.
        Mov Disord. 2008; 23: 350-358
        • Desautels A
        • Turecki G
        • Montplaisir J
        • et al.
        Restless legs syndrome: confirmation of linkage to chromosome 12q, genetic heterogeneity, and evidence of complexity.
        Arch Neurol. 2005; 62: 591-596
        • Winkelmann J
        • Lichtner P
        • Pütz B
        • et al.
        Evidence for further genetic locus heterogeneity and confirmation of RLS-1 in restless legs syndrome.
        Mov Disord. 2006; 21: 28-33
        • Schmidtko A
        • Tegeder I
        • Geisslinger G
        No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing.
        Trends Neurosci. 2009; 32: 339-346
        • Miyagawa T
        • Kawashima M
        • Nishida N
        • et al.
        Variant between CPT1B and CHKB associated with susceptibility to narcolepsy.
        Nat Genet. 2008; 40: 1324-1328
        • Langdon N
        • Welsh KI
        • van Dam M
        • Vaughan RW
        • Parkes D
        Genetic markers in narcolepsy.
        Lancet. 1984; 324: 1178-1180
        • Yoshida G
        • Li MX
        • Horiuchi M
        • et al.
        Fasting-induced reduction in locomotor activity and reduced response of orexin neurons in carnitine-deficient mice.
        Neurosci Res. 2006; 55: 78-86
        • Kuwajima M
        • Fujihara H
        • Sei H
        • et al.
        Reduced carnitine level causes death from hypoglycemia: possible involvement of suppression of hypothalamic orexin expression during weaning period.
        Endocr J. 2007; 54: 911-925
        • Dixon CE
        • Ma X
        • Marion DW
        Effects of CDP-choline treatment on neurobehavioral deficits after TBI and on hippocampal and neocortical acetylcholine release.
        J Neurotrauma. 1997; 14: 161-169
        • Hallmayer J
        • Faraco J
        • Lin L
        • et al.
        Narcolepsy is strongly associated with the T-cell receptor alpha locus.
        Nat Genet. 2009; 41 (corrected 2009;41(7):859): 708-711
        • Hor H
        • Kutalik Z
        • Dauvilliers Y
        • et al.
        Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy.
        Nature Genetics. 2010; 42: 786-789
        • Altshuler D
        • Daly M
        Guilt beyond a reasonable doubt.
        Nat Genet. 2007; 39: 813-815
        • Zimmerman JE
        • Naidoo N
        • Raizen DM
        • Pack AI
        Conservation of sleep: insights from non-mammalian model systems.
        Trends Neurosci. 2008; 31: 371-376
        • Allada R
        • Siegel JM
        Unearthing the phylogenetic roots of sleep.
        Curr Biol. 2008; 18: R670-R679
        • Yokogawa T
        • Marin W
        • Faraco J
        • et al.
        Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants.
        PLoS Biol. 2007; 5: e277
        • Prober DA
        • Rihel J
        • Onah AA
        • Sung RJ
        • Schier AF
        Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish.
        J Neurosci. 2006; 26: 13400-13410
        • Xu Y
        • Padiath QS
        • Shapiro RE
        • et al.
        Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome.
        Nature. 2005; 434: 640-644
        • Xu Y
        • Toh KL
        • Jones CR
        • Shin JY
        • Fu YH
        • Ptácek LJ
        Modeling of a human circadian mutation yields insights into clock regulation by PER2.
        Cell. 2007; 128: 59-70
        • He Y
        • Jones CR
        • Fujiki N
        • et al.
        The transcriptional repressor DEC2 regulates sleep length in mammals.
        Science. 2009; 325: 866-870
        • Allada R
        • Emery P
        • Takahashi JS
        • Rosbash M
        Stopping time: the genetics of fly and mouse circadian clocks.
        Annu Rev Neurosci. 2001; 24: 1091-1119
        • Jones S
        • Hruban RH
        • Kamiyama M
        • et al.
        Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene.
        Science. 2009; 324: 217
        • Ng SB
        • Turner EH
        • Robertson PD
        • et al.
        Targeted capture and massively parallel sequencing of 12 human exomes.
        Nature. 2009; 461: 272-276
        • Choi M
        • Scholl UI
        • Ji W
        • et al.
        Genetic diagnosis by whole exome capture and massively parallel DNA sequencing.
        Proc Natl Acad Sci USA. 2009; 106: 19096-19101
        • Roach JC
        • Glusman G
        • Smit AF
        • et al.
        Analysis of genetic inheritance in a family quartet by whole-genome sequencing.
        Science. 2010; 328: 636-639
        • Lupski JR
        • Reid JG
        • Gonzaga-Jauregui C
        • et al.
        Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy.
        N Engl J Med. 2010; 362: 1181-1191