Advertisement

Antithrombotic Therapy for VTE Disease

CHEST Guideline and Expert Panel Report

      Background

      We update recommendations on 12 topics that were in the 9th edition of these guidelines, and address 3 new topics.

      Methods

      We generate strong (Grade 1) and weak (Grade 2) recommendations based on high- (Grade A), moderate- (Grade B), and low- (Grade C) quality evidence.

      Results

      For VTE and no cancer, as long-term anticoagulant therapy, we suggest dabigatran (Grade 2B), rivaroxaban (Grade 2B), apixaban (Grade 2B), or edoxaban (Grade 2B) over vitamin K antagonist (VKA) therapy, and suggest VKA therapy over low-molecular-weight heparin (LMWH; Grade 2C). For VTE and cancer, we suggest LMWH over VKA (Grade 2B), dabigatran (Grade 2C), rivaroxaban (Grade 2C), apixaban (Grade 2C), or edoxaban (Grade 2C). We have not changed recommendations for who should stop anticoagulation at 3 months or receive extended therapy. For VTE treated with anticoagulants, we recommend against an inferior vena cava filter (Grade 1B). For DVT, we suggest not using compression stockings routinely to prevent PTS (Grade 2B). For subsegmental pulmonary embolism and no proximal DVT, we suggest clinical surveillance over anticoagulation with a low risk of recurrent VTE (Grade 2C), and anticoagulation over clinical surveillance with a high risk (Grade 2C). We suggest thrombolytic therapy for pulmonary embolism with hypotension (Grade 2B), and systemic therapy over catheter-directed thrombolysis (Grade 2C). For recurrent VTE on a non-LMWH anticoagulant, we suggest LMWH (Grade 2C); for recurrent VTE on LMWH, we suggest increasing the LMWH dose (Grade 2C).

      Conclusions

      Of 54 recommendations included in the 30 statements, 20 were strong and none was based on high-quality evidence, highlighting the need for further research.

      Key Words

      Abbreviations:

      AT9 (9th Edition of the Antithrombotic Guideline), AT10 (10th Edition of the Antithrombotic Guideline), CHEST (American College of Chest Physicians), CDT (catheter-directed thrombolysis), COI (conflict of interest), CTEPH (chronic thromboembolic pulmonary hypertension), CTPA (CT pulmonary angiogram), GOC (Guidelines Oversight Committee), INR (International Normalized Ratio), IVC (inferior vena cava), LMWH (low-molecular-weight heparin), NOAC (non-vitamin K oral anticoagulant), PE (pulmonary embolism), PTS (postthrombotic syndrome), RCT (randomized controlled trial), UEDVT (upper extremity deep vein thrombosis), US (ultrasound), VKA (vitamin K antagonist)
      To read this article in full you will need to make a payment
      Subscribe to CHEST
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kearon C.
        • Akl E.A.
        • Comerota A.J.
        • et al.
        Antithrombotic therapy for VTE disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.
        Chest. 2012; 141: e419S-494S
        • Guyatt G.
        • Akl E.A.
        • Hirsh J.
        • et al.
        The vexing problem of guidelines and conflict of interest: a potential solution.
        Ann Intern Med. 2010; 152: 738-741
        • Shea B.J.
        • Grimshaw J.M.
        • Wells G.A.
        • et al.
        Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews.
        BMC Med Res Methodol. 2007; 7: 10
        • Higgins J.P.
        • Altman D.G.
        • Gotzsche P.C.
        • et al.
        The Cochrane Collaboration's tool for assessing risk of bias in randomised trials.
        BMJ. 2011; 343: d5928
        • Guyatt G.H.
        • Oxman A.D.
        • Vist G.
        • et al.
        GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias).
        J Clin Epidemiol. 2011; 64: 407-415
        • Balshem H.
        • Helfand M.
        • Schünemann H.J.
        • et al.
        GRADE guidelines: 3. Rating the quality of evidence.
        J Clin Epidemiol. 2011; 64: 401-406
        • Guyatt G.
        • Gutterman D.
        • Baumann M.H.
        • et al.
        Grading strength of recommendations and quality of evidence in clinical guidelines: report from an american college of chest physicians task force.
        Chest. 2006; 129: 174-181
        • Guyatt G.H.
        • Oxman A.D.
        • Montori V.
        • et al.
        GRADE guidelines: 5. Rating the quality of evidence—publication bias.
        J Clin Epidemiol. 2011; 64: 1277-1282
        • Guyatt G.H.
        • Oxman A.D.
        • Kunz R.
        • et al.
        GRADE guidelines 6. Rating the quality of evidence—imprecision.
        J Clin Epidemiol. 2011; 64: 1283-1293
        • Guyatt G.H.
        • Oxman A.D.
        • Kunz R.
        • et al.
        GRADE guidelines: 7. Rating the quality of evidence—inconsistency.
        J Clin Epidemiol. 2011; 64: 1294-1302
        • Guyatt G.H.
        • Oxman A.D.
        • Kunz R.
        • et al.
        GRADE guidelines: 8. Rating the quality of evidence—indirectness.
        J Clin Epidemiol. 2011; 64: 1303-1310
        • Guyatt G.H.
        • Oxman A.D.
        • Sultan S.
        • et al.
        GRADE guidelines: 9. Rating up the quality of evidence.
        J Clin Epidemiol. 2011; 64: 1311-1316
        • Guyatt G.
        • Oxman A.D.
        • Akl E.A.
        • et al.
        GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables.
        J Clin Epidemiol. 2011; 64: 383-394
        • Andrews J.
        • Guyatt G.
        • Oxman A.D.
        • et al.
        GRADE guidelines: 14. Going from evidence to recommendations: the significance and presentation of recommendations.
        J Clin Epidemiol. 2013; 66: 719-725
        • Andrews J.C.
        • Schünemann H.J.
        • Oxman A.D.
        • et al.
        GRADE guidelines: 15. Going from evidence to recommendation—determinants of a recommendation's direction and strength.
        J Clin Epidemiol. 2013; 66: 726-735
        • MacLean S.
        • Mulla S.
        • Akl E.A.
        • et al.
        Patient values and preferences in decision making for antithrombotic therapy: a systematic review: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.
        Chest. 2012; 141: e1S-e23S
        • Jones J.
        • Hunter D.
        Consensus methods for medical and health services research.
        BMJ. 1995; 311: 376-380
        • Lewis S.Z.
        • Diekemper R.
        • Ornelas J.
        • Casey K.R.
        Methodologies for the development of CHEST guidelines and expert panel reports.
        Chest. 2014; 146: 182-192
        • Jaeschke R.
        • Guyatt G.H.
        • Dellinger P.
        • et al.
        Use of GRADE grid to reach decisions on clinical practice guidelines when consensus is elusive.
        BMJ. 2008; 337: a744
        • Schulman S.
        • Kearon C.
        • Kakkar A.K.
        • et al.
        Dabigatran versus warfarin in the treatment of acute venous thromboembolism.
        N Engl J Med. 2009; 361: 2342-2352
        • Bauersachs R.
        • Berkowitz S.D.
        • Brenner B.
        • et al.
        Oral rivaroxaban for symptomatic venous thromboembolism.
        N Engl J Med. 2010; 363: 2499-2510
        • Lee A.Y.
        • Kamphuisen P.W.
        • Meyer G.
        • et al.
        Tinzaparin vs Warfarin for Treatment of Acute Venous Thromboembolism in Patients With Active Cancer: a randomized clinical trial.
        JAMA. 2015; 314: 677-686
        • Buller H.R.
        • Decousus H.
        • et al.
        • Hokusai-VTE Investigators
        Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism.
        N Engl J Med. 2013; 369: 1406-1415
        • Schulman S.
        • Kakkar A.K.
        • Goldhaber S.Z.
        • et al.
        Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis.
        Circulation. 2014; 129: 764-772
        • Agnelli G.
        • Buller H.R.
        • Cohen A.
        • et al.
        Oral apixaban for the treatment of acute venous thromboembolism.
        N Engl J Med. 2013; 369: 799-808
        • Buller H.R.
        • Prins M.H.
        • et al.
        • EINSTEIN-EP Investigators
        Oral rivaroxaban for the treatment of symptomatic pulmonary embolism.
        N Engl J Med. 2012; 366: 1287-1297
        • van Es N.
        • Coppens M.
        • Schulman S.
        • Middeldorp S.
        • Buller H.R.
        Direct oral anticoagulants compared with vitamin K antagonists for acute venous thromboembolism: evidence from phase 3 trials.
        Blood. 2014; 124: 1968-1975
        • Holster I.L.
        • Valkhoff V.E.
        • Kuipers E.J.
        • Tjwa E.T.
        New oral anticoagulants increase risk for gastrointestinal bleeding: a systematic review and meta-analysis.
        Gastroenterology. 2013; 145: 105-112
        • Gomez-Outes A.
        • Terleira-Fernandez A.I.
        • Lecumberri R.
        • Suarez-Gea M.L.
        • Vargas-Castrillon E.
        Direct oral anticoagulants in the treatment of acute venous thromboembolism: a systematic review and meta-analysis.
        Thromb Res. 2014; 134: 774-782
        • Fox B.D.
        • Kahn S.R.
        • Langleben D.
        • Eisenberg M.J.
        • Shimony A.
        Efficacy and safety of novel oral anticoagulants for treatment of acute venous thromboembolism: direct and adjusted indirect meta-analysis of randomised controlled trials.
        BMJ. 2012; 345: e7498
        • van der Hulle T.
        • Kooiman J.
        • den Exter P.L.
        • Dekkers O.M.
        • Klok F.A.
        • Huisman M.V.
        Effectiveness and safety of novel oral anticoagulants as compared with vitamin K antagonists in the treatment of acute symptomatic venous thromboembolism: a systematic review and meta-analysis.
        J Thromb Haemost. 2014; 12: 320-328
        • Mantha S.
        • Ansell J.
        Indirect comparison of dabigatran, rivaroxaban, apixaban and edoxaban for the treatment of acute venous thromboembolism.
        J Thromb Thrombolysis. 2015; 39: 155-165
        • Chai-Adisaksopha C.
        • Crowther M.
        • Isayama T.
        • Lim W.
        The impact of bleeding complications in patients receiving target-specific oral anticoagulants: a systematic review and meta-analysis.
        Blood. 2014; 124: 2450-2458
        • Wu C.
        • Alotaibi G.S.
        • Alsaleh K.
        • Linkins L.A.
        • Sean McMurtry M.
        Case-fatality of recurrent venous thromboembolism and major bleeding associated with aspirin, warfarin, and direct oral anticoagulants for secondary prevention.
        Thromb Res. 2015; 135: 243-248
        • Castellucci L.A.
        • Cameron C.
        • Le Gal G.
        • et al.
        Clinical and safety outcomes associated with treatment of acute venous thromboembolism: a systematic review and meta-analysis.
        JAMA. 2014; 312: 1122-1135
        • Carrier M.
        • Cameron C.
        • Delluc A.
        • Castellucci L.
        • Khorana A.A.
        • Lee A.Y.
        Efficacy and safety of anticoagulant therapy for the treatment of acute cancer-associated thrombosis: a systematic review and meta-analysis.
        Thromb Res. 2014; 134: 1214-1219
        • Vedovati M.C.
        • Germini F.
        • Agnelli G.
        • Becattini C.
        Direct oral anticoagulants in patients with vte and cancer: a systematic review and meta-analysis.
        Chest. 2015; 147: 475-483
        • Di Minno M.N.
        • Ageno W.
        • Dentali F.
        Meta-analysis of the efficacy and safety of new oral anticoagulants in patients with cancer-associated acute venous thromboembolism: comment.
        J Thromb Haemost. 2014; 12: 2136-2138
        • Franchini M.
        • Bonfanti C.
        • Lippi G.
        Cancer-associated thrombosis: investigating the role of new oral anticoagulants.
        Thromb Res. 2015; 135: 777-781
        • Bochenek T.
        • Nizankowski R.
        The treatment of venous thromboembolism with low-molecular-weight heparins. A meta-analysis.
        Thromb Haemost. 2012; 107: 699-716
        • Bloom B.J.
        • Filion K.B.
        • Atallah R.
        • Eisenberg M.J.
        Meta-analysis of randomized controlled trials on the risk of bleeding with dabigatran.
        Am J Cardiol. 2014; 113: 1066-1074
        • Touma L.
        • Filion K.B.
        • Atallah R.
        • Eberg M.
        • Eisenberg M.J.
        A meta-analysis of randomized controlled trials of the risk of bleeding with apixaban versus vitamin K antagonists.
        Am J Cardiol. 2015; 115: 533-541
        • Abraham N.S.
        • Singh S.
        • Alexander G.C.
        • et al.
        Comparative risk of gastrointestinal bleeding with dabigatran, rivaroxaban, and warfarin: population based cohort study.
        BMJ. 2015; 350: h1857
        • Kang N.
        • Sobieraj D.M.
        Indirect treatment comparison of new oral anticoagulants for the treatment of acute venous thromboembolism.
        Thromb Res. 2014; 133: 1145-1151
        • Majeed A.
        • Hwang H.G.
        • Connolly S.J.
        • et al.
        Management and outcomes of major bleeding during treatment with dabigatran or warfarin.
        Circulation. 2013; 128: 2325-2332
        • Kearon C.
        • Ginsberg J.S.
        • Kovacs M.J.
        • et al.
        Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism.
        N Engl J Med. 2003; 349: 631-639
        • Schulman S.
        • Kearon C.
        • Kakkar A.K.
        • et al.
        Extended use of dabigatran, warfarin, or placebo in venous thromboembolism.
        N Engl J Med. 2013; 368: 709-718
        • Agnelli G.
        • Buller H.R.
        • Cohen A.
        • et al.
        Apixaban for extended treatment of venous thromboembolism.
        N Engl J Med. 2013; 368: 699-708
        • Castellucci L.A.
        • Cameron C.
        • Le Gal G.
        • et al.
        Efficacy and safety outcomes of oral anticoagulants and antiplatelet drugs in the secondary prevention of venous thromboembolism: systematic review and network meta-analysis.
        BMJ. 2013; 347: f5133
        • Sobieraj D.M.
        • Coleman C.I.
        • Pasupuleti V.
        • Deshpande A.
        • Kaw R.
        • Hernandez A.V.
        Comparative efficacy and safety of anticoagulants and aspirin for extended treatment of venous thromboembolism: a network meta-analysis.
        Thromb Res. 2015; 135: 888-896
        • Iorio A.
        • Kearon C.
        • Filippucci E.
        • et al.
        Risk of recurrence after a first episode of symptomatic venous thromboembolism provoked by a transient risk factor: a systematic review.
        Arch Intern Med. 2010; 170: 1710-1716
        • Boutitie F.
        • Pinede L.
        • Schulman S.
        • et al.
        Influence of preceding length of anticoagulant treatment and initial presentation of venous thromboembolism on risk of recurrence after stopping treatment: analysis of individual participants' data from seven trials.
        BMJ. 2011; 342: d3036
        • Prandoni P.
        • Noventa F.
        • Ghirarduzzi A.
        • et al.
        The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1,626 patients.
        Haematologica. 2007; 92: 199-205
        • Prandoni P.
        • Lensing A.W.A.
        • Cogo A.
        • et al.
        The long-term clinical course of acute deep venous thrombosis.
        Ann Intern Med. 1996; 125: 1-7
        • Palareti G.
        • Legnani C.
        • Lee A.
        • et al.
        A comparison of the safety and efficacy of oral anticoagulation for the treatment of venous thromboembolic disease in patients with or without malignancy.
        Thromb Haemost. 2000; 84: 805-810
        • Baglin T.
        • Douketis J.
        • Tosetto A.
        • et al.
        Does the clinical presentation and extent of venous thrombosis predict likelihood and type of recurrence? A patient level meta-analysis.
        J Thromb Haemost. 2010; 8: 2436-2442
        • Hansson P.O.
        • Sorbo J.
        • Eriksson H.
        Recurrent venous thromboembolism after deep vein thrombosis: incidence and risk factors.
        Arch Intern Med. 2000; 160: 769-774
        • Schulman S.
        • Wahlander K.
        • Lundstrîm T.
        • Clason S.B.
        • Eriksson H.
        • for the TIIII
        Secondary prevention of venous thromboembolism with the oral direct thrombin inhibitor ximelagatran.
        N Engl J Med. 2003; 349: 1713-1721
        • Napolitano M.
        • Saccullo G.
        • Malato A.
        • et al.
        Optimal duration of low molecular weight heparin for the treatment of cancer-related deep vein thrombosis: the Cancer-DACUS Study.
        J Clin Oncol. 2014; 32: 3607-3612
        • Couturaud F.
        • Sanchez O.
        • Pernod G.
        • et al.
        Six months vs extended oral anticoagulation after a first episode of pulmonary embolism: The PADIS-PE randomized clinical trial.
        JAMA. 2015; 314: 31-40
        • Kearon C.
        • Gent M.
        • Hirsh J.
        • et al.
        A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism.
        N Engl J Med. 1999; 340: 901-907
        • Ridker P.M.
        • Goldhaber S.Z.
        • Danielson E.
        • et al.
        Long-term, low-intensity warfarin therapy for prevention of recurrent venous thromboembolism.
        N Engl J Med. 2003; 348: 1425-1434
        • Farraj R.S.
        Anticoagulation period in idiopathic venous thromboembolism. How long is enough?.
        Saudi Med J. 2004; 25: 848-851
        • Palareti G.
        • Cosmi B.
        • Legnani C.
        • et al.
        D-dimer testing to determine the duration of anticoagulation therapy.
        N Engl J Med. 2006; 355: 1780-1789
        • Schulman S.
        • Granqvist S.
        • Holmstrom M.
        • et al.
        The duration of oral anticoagulant therapy after a second episode of venous thromboembolism.
        N Engl J Med. 1997; 336: 393-398
        • Douketis J.
        • Tosetto A.
        • Marcucci M.
        • et al.
        Risk of recurrence after venous thromboembolism in men and women: patient level meta-analysis.
        BMJ. 2011; 342: d813
        • Douketis J.
        • Tosetto A.
        • Marcucci M.
        • et al.
        Patient-level meta-analysis: effect of measurement timing, threshold, and patient age on ability of D-dimer testing to assess recurrence risk after unprovoked venous thromboembolism.
        Ann Intern Med. 2010; 153: 523-531
        • Palareti G.
        • Cosmi B.
        • Legnani C.
        • et al.
        D-dimer to guide the duration of anticoagulation in patients with venous thromboembolism: a management study.
        Blood. 2014; 124: 196-203
        • Kearon C.
        • Spencer F.A.
        • O'Keeffe D.
        • et al.
        D-dimer testing to select patients with a first unprovoked venous thromboembolism who can stop anticoagulant therapy: a cohort study.
        Ann Intern Med. 2015; 162: 27-34
        • Brighton T.A.
        • Eikelboom J.W.
        • Mann K.
        • et al.
        Low-dose aspirin for preventing recurrent venous thromboembolism.
        N Engl J Med. 2012; 367: 1979-1987
        • Becattini C.
        • Agnelli G.
        • Schenone A.
        • et al.
        Aspirin for preventing the recurrence of venous thromboembolism.
        N Engl J Med. 2012; 366: 1959-1967
        • Simes J.
        • Becattini C.
        • Agnelli G.
        • et al.
        Aspirin for the prevention of recurrent venous thromboembolism: the INSPIRE collaboration.
        Circulation. 2014; 130: 1062-1071
        • Bates S.M.
        • Jaeschke R.
        • Stevens S.M.
        • et al.
        Diagnosis of DVT: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (Ninth Edition).
        Chest. 2012; 141: e351S-e418S
        • Righini M.
        • Paris S.
        • Le Gal G.
        • Laroche J.P.
        • Perrier A.
        • Bounameaux H.
        Clinical relevance of distal deep vein thrombosis. Review of literature data.
        Thromb Haemost. 2006; 95: 56-64
        • Masuda E.M.
        • Kistner R.L.
        The case for managing calf vein thrombi with duplex surveillance and selective anticoagulation.
        Dis Mon. 2010; 56: 601-613
        • Masuda E.M.
        • Kistner R.L.
        • Musikasinthorn C.
        • Liquido F.
        • Geling O.
        • He Q.
        The controversy of managing calf vein thrombosis.
        J Vasc Surg. 2012; 55: 550-561
        • De Martino R.R.
        • Wallaert J.B.
        • Rossi A.P.
        • Zbehlik A.J.
        • Suckow B.
        • Walsh D.B.
        A meta-analysis of anticoagulation for calf deep venous thrombosis.
        J Vasc Surg. 2012; 56: 228-237.e221
        • Spencer F.
        • Kroll A.
        • Lessard D.
        • et al.
        Isolated calf deep vein thrombosis in the community setting: the Worcester Venous Thromboembolism study.
        J Thromb Thrombolysis. 2012; 33: 211-217
        • Hughes M.J.
        • Stein P.D.
        • Matta F.
        Silent pulmonary embolism in patients with distal deep venous thrombosis: systematic review.
        Thromb Res. 2014; 134: 1182-1185
        • Kearon C.
        Natural history of venous thromboembolism.
        Circulation. 2003; 107: I22-I30
        • Macdonald P.S.
        • Kahn S.R.
        • Miller N.
        • Obrand D.
        Short-term natural history of isolated gastrocnemius and soleal vein thrombosis.
        J Vasc Surg. 2003; 37: 523-527
        • Parisi R.
        • Visona A.
        • Camporese G.
        • et al.
        Isolated distal deep vein thrombosis: efficacy and safety of a protocol of treatment. Treatment of Isolated Calf Thrombosis (TICT) Study.
        Int Angiol. 2009; 28: 68-72
        • Palareti G.
        How I treat isolated distal deep vein thrombosis (IDDVT).
        Blood. 2014; 123: 1802-1809
        • Galanaud J.P.
        • Sevestre M.A.
        • Genty C.
        • et al.
        Incidence and predictors of venous thromboembolism recurrence after a first isolated distal deep vein thrombosis.
        J Thromb Haemost. 2014; 12: 436-443
        • Schwarz T.
        • Buschmann L.
        • Beyer J.
        • Halbritter K.
        • Rastan A.
        • Schellong S.
        Therapy of isolated calf muscle vein thrombosis: a randomized, controlled study.
        J Vasc Surg. 2010; 52: 1246-1250
        • Elsharawy M.
        • Elzayat E.
        Early results of thrombolysis vs anticoagulation in iliofemoral venous thrombosis. A randomised clinical trial.
        Eur J Vasc Endovasc.Surg. 2002; 24: 209-214
        • Enden T.
        • Klow N.E.
        • Sandvik L.
        • et al.
        Catheter-directed thrombolysis vs. anticoagulant therapy alone in deep vein thrombosis: results of an open randomized, controlled trial reporting on short-term patency.
        J Thromb Haemost. 2009; 7: 1268-1275
        • Enden T.
        • Sandvik L.
        • Klow N.E.
        • et al.
        Catheter-directed Venous Thrombolysis in acute iliofemoral vein thrombosis—the CaVenT study: rationale and design of a multicenter, randomized, controlled, clinical trial (NCT00251771).
        Am Heart J. 2007; 154: 808-814
        • Haig Y.
        • Enden T.
        • Slagsvold C.E.
        • Sandvik L.
        • Sandset P.M.
        • Klow N.E.
        Determinants of early and long-term efficacy of catheter-directed thrombolysis in proximal deep vein thrombosis.
        J Vasc Interv Radiol. 2013; 24: 17-26
        • Enden T.
        • Haig Y.
        • Klow N.E.
        • et al.
        Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial.
        Lancet. 2012; 379: 31-38
        • Enden T.
        • Resch S.
        • White C.
        • Wik H.S.
        • Klow N.E.
        • Sandset P.M.
        Cost-effectiveness of additional catheter-directed thrombolysis for deep vein thrombosis.
        J Thromb Haemost. 2013; 11: 1032-1042
        • Watson L.I.
        • Armon M.P.
        Thrombolysis for acute deep vein thrombosis.
        Cochrane Database Syst Rev. 2004; : Cd002783
        • Bashir R.
        • Zack C.J.
        • Zhao H.
        • Comerota A.J.
        • Bove A.A.
        Comparative outcomes of catheter-directed thrombolysis plus anticoagulation vs anticoagulation alone to treat lower-extremity proximal deep vein thrombosis.
        JAMA Intern Med. 2014; 174: 1494-1501
        • Engelberger R.P.
        • Fahrni J.
        • Willenberg T.
        • et al.
        Fixed low-dose ultrasound-assisted catheter-directed thrombolysis followed by routine stenting of residual stenosis for acute ilio-femoral deep-vein thrombosis.
        Thromb Haemost. 2014; 111: 1153-1160
        • Decousus H.
        • Leizorovicz A.
        • Parent F.
        • et al.
        A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis.
        N Engl J Med. 1998; 338: 409-415
      1. Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (Prevention du Risque d'Embolie Pulmonaire par Interruption Cave) randomized study.
        Circulation. 2005; 112: 416-422
        • Stein P.D.
        • Matta F.
        Vena cava filters in unstable elderly patients with acute pulmonary embolism.
        Am J Med. 2014; 127: 222-225
        • Stein P.D.
        • Matta F.
        • Keyes D.C.
        • Willyerd G.L.
        Impact of vena cava filters on in-hospital case fatality rate from pulmonary embolism.
        Am J Med. 2012; 125: 478-484
        • Muriel A.
        • Jimenez D.
        • Aujesky D.
        • et al.
        Survival effects of inferior vena cava filter in patients with acute symptomatic venous thromboembolism and a significant bleeding risk.
        J Am Coll Cardiol. 2014; 63: 1675-1683
        • Prasad V.
        • Rho J.
        • Cifu A.
        The inferior vena cava filter: how could a medical device be so well accepted without any evidence of efficacy?.
        JAMA Intern Med. 2013; 173: 493-495
        • Girard P.
        • Meyer G.
        • Parent F.
        • Mismetti P.
        Medical literature, vena cava filters and evidence of efficacy. A descriptive review.
        Thromb Haemost. 2014; 111: 761-769
        • Mismetti P.
        • Laporte S.
        • Pellerin O.
        • et al.
        Effect of a retrievable inferior vena cava filter plus anticoagulation vs anticoagulation alone on risk of recurrent pulmonary embolism: a randomized clinical trial.
        JAMA. 2015; 313: 1627-1635
        • Brandjes D.P.
        • Buller H.R.
        • Heijboer H.
        • et al.
        Randomised trial of effect of compression stockings in patients with symptomatic proximal-vein thrombosis.
        Lancet. 1997; 349: 759-762
        • Prandoni P.
        • Lensing A.W.
        • Prins M.H.
        • et al.
        Below-knee elastic compression stockings to prevent the post-thrombotic syndrome: a randomized, controlled trial.
        Ann Intern Med. 2004; 141: 249-256
        • Kahn S.R.
        • Comerota A.J.
        • Cushman M.
        • et al.
        The postthrombotic syndrome: evidence-based prevention, diagnosis, and treatment strategies: a scientific statement from the American Heart Association.
        Circulation. 2014; 130: 1636-1661
        • Kahn S.R.
        • Shapiro S.
        • Wells P.S.
        • et al.
        Compression stockings to prevent post-thrombotic syndrome: a randomised placebo-controlled trial.
        Lancet. 2014; 383: 880-888
        • Kahn S.R.
        • Shapiro S.
        • Ducruet T.
        • et al.
        Graduated compression stockings to treat acute leg pain associated with proximal DVT. A randomised controlled trial.
        Thromb Haemost. 2014; 112: 1137-1141
        • Wiener R.S.
        • Schwartz L.M.
        • Woloshin S.
        When a test is too good: how CT pulmonary angiograms find pulmonary emboli that do not need to be found.
        BMJ. 2013; 347: f3368
        • Carrier M.
        • Righini M.
        • Wells P.S.
        • et al.
        Subsegmental pulmonary embolism diagnosed by computed tomography: incidence and clinical implications. A systematic review and meta-analysis of the management outcome studies.
        J Thromb Haemost. 2010; 8: 1716-1722
        • Carrier M.
        • Righini M.
        • Le Gal G.
        Symptomatic subsegmental pulmonary embolism: what is the next step?.
        J Thromb Haemost. 2012; 10: 1486-1490
        • Stein P.D.
        • Goodman L.R.
        • Hull R.D.
        • Dalen J.E.
        • Matta F.
        Diagnosis and management of isolated subsegmental pulmonary embolism: review and assessment of the options.
        Clin Appl Thromb Hemost. 2012; 18: 20-26
        • Costantino G.
        • Norsa A.H.
        • Amadori R.
        • et al.
        Interobserver agreement in the interpretation of computed tomography in acute pulmonary embolism.
        Am J Emerg Med. 2009; 27: 1109-1111
        • Lucassen W.A.
        • Beenen L.F.
        • Buller H.R.
        • et al.
        Concerns in using multi-detector computed tomography for diagnosing pulmonary embolism in daily practice. A cross-sectional analysis using expert opinion as reference standard.
        Thromb Res. 2013; 131: 145-149
        • Stein P.D.
        • Fowler S.E.
        • Goodman L.R.
        • et al.
        Multidetector computed tomography for acute pulmonary embolism.
        N Engl J Med. 2006; 354: 2317-2327
        • Courtney D.M.
        • Miller C.
        • Smithline H.
        • Klekowski N.
        • Hogg M.
        • Kline J.A.
        Prospective multicenter assessment of interobserver agreement for radiologist interpretation of multidetector computerized tomographic angiography for pulmonary embolism.
        J Thromb Haemost. 2010; 8: 533-539
        • Pena E.
        • Kimpton M.
        • Dennie C.
        • Peterson R.
        • G LEG
        • Carrier M.
        Difference in interpretation of computed tomography pulmonary angiography diagnosis of subsegmental thrombosis in patients with suspected pulmonary embolism.
        J Thromb Haemost. 2012; 10: 496-498
        • Le Gal G.
        • Righini M.
        • Parent F.
        • van Strijen M.
        • Couturaud F.
        Diagnosis and management of subsegmental pulmonary embolism.
        J Thromb Haemost. 2006; 4: 724-731
        • Le Gal G.
        • Righini M.
        • Sanchez O.
        • et al.
        A positive compression ultrasonography of the lower limb veins is highly predictive of pulmonary embolism on computed tomography in suspected patients.
        Thromb Haemost. 2006; 95: 963-966
        • den Exter P.L.
        • van Es J.
        • Klok F.A.
        • et al.
        Risk profile and clinical outcome of symptomatic subsegmental acute pulmonary embolism.
        Blood. 2013; 122 (quiz 1329): 1144-1149
        • Kearon C.
        • Ginsberg J.S.
        • Hirsh J.
        The role of venous ultrasonography in the diagnosis of suspected deep venous thrombosis and pulmonary embolism.
        Ann Intern Med. 1998; 129: 1044-1049
        • Otero R.
        • Uresandi F.
        • Jimenez D.
        • et al.
        Home treatment in pulmonary embolism.
        Thromb Res. 2010; 126: e1-e5
        • Aujesky D.
        • Roy P.M.
        • Verschuren F.
        • et al.
        Outpatient versus inpatient treatment for patients with acute pulmonary embolism: an international, open-label, randomised, non-inferiority trial.
        Lancet. 2011; 378: 41-48
        • Piran S.
        • Le Gal G.
        • Wells P.S.
        • et al.
        Outpatient treatment of symptomatic pulmonary embolism: a systematic review and meta-analysis.
        Thromb Res. 2013; 132: 515-519
        • Vinson D.R.
        • Zehtabchi S.
        • Yealy D.M.
        Can selected patients with newly diagnosed pulmonary embolism be safely treated without hospitalization? A systematic review.
        Ann Emerg Med. 2012; 60: 651-662
        • Zondag W.
        • Kooiman J.
        • Klok F.A.
        • Dekkers O.M.
        • Huisman M.V.
        Outpatient versus inpatient treatment in patients with pulmonary embolism: a meta-analysis.
        Eur Respir J. 2013; 42: 134-144
        • Chan C.M.
        • Woods C.
        • Shorr A.F.
        The validation and reproducibility of the pulmonary embolism severity index.
        J Thromb Haemost. 2010; 8: 1509-1514
        • Jimenez D.
        • Aujesky D.
        • Moores L.
        • et al.
        Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism.
        Arch Intern Med. 2010; 170: 1383-1389
        • Moores L.
        • Aujesky D.
        • Jimenez D.
        • et al.
        Pulmonary Embolism Severity Index and troponin testing for the selection of low-risk patients with acute symptomatic pulmonary embolism.
        J Thromb Haemost. 2010; 8: 517-522
        • Ozsu S.
        • Abul Y.
        • Orem A.
        • et al.
        Predictive value of troponins and simplified pulmonary embolism severity index in patients with normotensive pulmonary embolism.
        Multidisc Respir Medic. 2013; 8: 34
        • Righini M.
        • Roy P.M.
        • Meyer G.
        • Verschuren F.
        • Aujesky D.
        • Le Gal G.
        The Simplified Pulmonary Embolism Severity Index (PESI): validation of a clinical prognostic model for pulmonary embolism.
        J Thromb Haemost. 2011; 9: 2115-2117
        • Zondag W.
        • den Exter P.L.
        • Crobach M.J.
        • et al.
        Comparison of two methods for selection of out of hospital treatment in patients with acute pulmonary embolism.
        Thromb Haemost. 2013; 109: 47-52
        • Jimenez D.
        • Uresandi F.
        • Otero R.
        • et al.
        Troponin-based risk stratification of patients with acute nonmassive pulmonary embolism: systematic review and metaanalysis.
        Chest. 2009; 136: 974-982
        • Lankeit M.
        • Jimenez D.
        • Kostrubiec M.
        • et al.
        Validation of N-terminal pro-brain natriuretic peptide cut-off values for risk stratification of pulmonary embolism.
        Eur Respir J. 2014; 43: 1669-1677
        • Becattini C.
        • Agnelli G.
        • Germini F.
        • Vedovati M.C.
        Computed tomography to assess risk of death in acute pulmonary embolism: a meta-analysis.
        Eur Respir J. 2014; 43: 1678-1690
        • Coutance G.
        • Cauderlier E.
        • Ehtisham J.
        • Hamon M.
        • Hamon M.
        The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis.
        Critical care. 2011; 15: R103
        • Spirk D.
        • Aujesky D.
        • Husmann M.
        • et al.
        Cardiac troponin testing and the simplified Pulmonary Embolism Severity Index. The SWIss Venous ThromboEmbolism Registry (SWIVTER).
        Thromb Haemost. 2011; 106: 978-984
        • Lankeit M.
        • Gomez V.
        • Wagner C.
        • et al.
        A strategy combining imaging and laboratory biomarkers in comparison with a simplified clinical score for risk stratification of patients with acute pulmonary embolism.
        Chest. 2012; 141: 916-922
        • Konstantinides S.V.
        • Torbicki A.
        • Agnelli G.
        • et al.
        2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism.
        Eur Heart J. 2014; 35 (3069a-3069k): 3033-3069
        • Dong B.
        • Jirong Y.
        • Wang Q.
        • Wu T.
        Thrombolytic treatment for pulmonary embolism.
        Cochrane Database Syst Rev. 2006; 2: CD004437
      2. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists' (FTT) Collaborative Group.
        Lancet. 1994; 343: 311-322
        • Kline J.A.
        • Nordenholz K.E.
        • Courtney D.M.
        • et al.
        Treatment of submassive pulmonary embolism with tenecteplase or placebo: cardiopulmonary outcomes at 3 months: multicenter double-blind, placebo-controlled randomized trial.
        J Thromb Haemost. 2014; 12: 459-468
        • Sharifi M.
        • Bay C.
        • Skrocki L.
        • Rahimi F.
        • Mehdipour M.
        Moderate Pulmonary Embolism Treated With Thrombolysis (from the “MOPETT” Trial).
        Am J Cardiol. 2013; 111: 273-277
        • Meyer G.
        • Vicaut E.
        • Danays T.
        • et al.
        Fibrinolysis for patients with intermediate-risk pulmonary embolism.
        N Engl J Med. 2014; 370: 1402-1411
        • Wang T.F.
        • Squizzato A.
        • Dentali F.
        • Ageno W.
        The role of thrombolytic therapy in pulmonary embolism.
        Blood. 2015; 125: 2191-2199
        • Marti C.
        • John G.
        • Konstantinides S.
        • et al.
        Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis.
        Eur Heart J. 2015; 36: 605-614
        • Nakamura S.
        • Takano H.
        • Kubota Y.
        • Asai K.
        • Shimizu W.
        Impact of the efficacy of thrombolytic therapy on the mortality of patients with acute submassive pulmonary embolism: a meta-analysis.
        J Thromb Haemost. 2014; 12: 1086-1095
        • Chatterjee S.
        • Chakraborty A.
        • Weinberg I.
        • et al.
        Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis.
        JAMA. 2014; 311: 2414-2421
        • Riera-Mestre A.
        • Becattini C.
        • Giustozzi M.
        • Agnelli G.
        Thrombolysis in hemodynamically stable patients with acute pulmonary embolism: a meta-analysis.
        Thromb Res. 2014; 134: 1265-1271
        • Aujesky D.
        • Obrosky D.S.
        • Stone R.A.
        • et al.
        Derivation and validation of a prognostic model for pulmonary embolism.
        Am J Respir Crit Care Med. 2005; 172: 1041-1046
        • Kuo W.T.
        • Gould M.K.
        • Louie J.D.
        • Rosenberg J.K.
        • Sze D.Y.
        • Hofmann L.V.
        Catheter-directed therapy for the treatment of massive pulmonary embolism: systematic review and meta-analysis of modern techniques.
        J Vasc Interv Radiol. 2009; 20: 1431-1440
        • Kuo W.T.
        Endovascular therapy for acute pulmonary embolism.
        J Vasc Interv Radiol. 2012; 23: 167-179
        • Avgerinos E.D.
        • Chaer R.A.
        Catheter-directed interventions for acute pulmonary embolism.
        J Vasc Surg. 2015; 61: 559-565
        • Jaff M.R.
        • McMurtry M.S.
        • Archer S.L.
        • et al.
        Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association.
        Circulation. 2011; 123: 1788-1830
        • Kucher N.
        • Boekstegers P.
        • Muller O.J.
        • et al.
        Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism.
        Circulation. 2014; 129: 479-486
        • Kuo W.T.
        • Banerjee A.
        • Kim P.S.
        • et al.
        Pulmonary Embolism Response to Fragmentation, Embolectomy, and Catheter Thrombolysis (PERFECT): initial results from a prospective multicenter registry.
        Chest. 2015; 148: 667-673
        • Piazza G.
        • Hohlfelder B.
        • Jaff M.R.
        • et al.
        A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism: the SEATTLE II Study.
        JACC Cardiovasc Interv. 2015; 8: 1382-1392
        • Verstraete M.
        • Miller G.A.H.
        • Bounameaux H.
        • et al.
        Intravenous and intrapulmonary recombinant tissue-type plasminogen activator in the treatment of acute massive pulmonary embolism.
        Circulation. 1988; 77: 353-360
        • Pepke-Zaba J.
        • Delcroix M.
        • Lang I.
        • et al.
        Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry.
        Circulation. 2011; 124: 1973-1981
        • Fedullo P.
        • Kerr K.M.
        • Kim N.H.
        • Auger W.R.
        Chronic thromboembolic pulmonary hypertension.
        Am J Respir Crit Care Med. 2011; 183: 1605-1613
        • Mayer E.
        • Jenkins D.
        • Lindner J.
        • et al.
        Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry.
        J Thorac Cardiovasc Surg. 2011; 141: 702-710
        • Hayes, Inc
        Pulmonary thromboendarterectomy for treatment of pulmonary hypertension (structured abstract).
        Health Technol Assess Database. 2012;
        • Rahnavardi M.
        • Yan T.D.
        • Cao C.
        • Vallely M.P.
        • Bannon P.G.
        • Wilson M.K.
        Pulmonary thromboendarterectomy for chronic thromboembolic pulmonary hypertension: a systematic review (structured abstract).
        Annf Thorac Cardiovasc Surg. 2011; 17: 435-445
        • Ghofrani H.A.
        • D'Armini A.M.
        • Grimminger F.
        • et al.
        Riociguat for the treatment of chronic thromboembolic pulmonary hypertension.
        N Engl J Med. 2013; 369: 319-329
        • Deano R.C.
        • Glassner-Kolmin C.
        • Rubenfire M.
        • et al.
        Referral of patients with pulmonary hypertension diagnoses to tertiary pulmonary hypertension centers: the multicenter RePHerral study.
        JAMA Intern Med. 2013; 173: 887-893
        • Andreassen A.K.
        • Ragnarsson A.
        • Gude E.
        • Geiran O.
        • Andersen R.
        Balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension.
        Heart. 2013; 99: 1415-1420
        • Taichman D.B.
        • Ornelas J.
        • Chung L.
        • et al.
        Pharmacologic therapy for pulmonary arterial hypertension in adults: CHEST guideline and expert panel report.
        Chest. 2014; 146: 449-475
        • Kucher N.
        Clinical practice. Deep-vein thrombosis of the upper extremities.
        N Engl J Med. 2011; 364: 861-869
        • Naeem M.
        • Soares G.
        • Ahn S.
        • Murphy T.P.
        Paget-Schroetter syndrome: a review and Algorithm (WASPS-IR).
        Phlebology. 2015; 30: 675-686
        • Heit J.A.
        • Mohr D.N.
        • Silverstein M.D.
        • Petterson T.M.
        • O'Fallon W.M.
        • Melton III, L.J.
        Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a population-based cohort study.
        Arch Intern Med. 2000; 160: 761-768
        • Lee A.Y.
        • Levine M.N.
        • Baker R.I.
        • et al.
        Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer.
        N Engl J Med. 2003; 349: 146-153
        • Carrier M.
        • Le Gal G.
        • Cho R.
        • Tierney S.
        • Rodger M.
        • Lee A.Y.
        Dose escalation of low molecular weight heparin to manage recurrent venous thromboembolic events despite systemic anticoagulation in cancer patients.
        J Thromb Haemost. 2009; 7: 760-765
        • Farge D.
        • Debourdeau P.
        • Beckers M.
        • et al.
        International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer.
        J Thromb Haemost. 2013; 11: 56-70
        • Deitcher S.R.
        • Kessler C.M.
        • Merli G.
        • et al.
        Secondary prevention of venous thromboembolic events in patients with active cancer: enoxaparin alone versus initial enoxaparin followed by warfarin for a 180-day period.
        Clin Appl Thromb Hemost. 2006; 12: 389-396
        • Hull R.D.
        • Pineo G.F.
        • Brant R.F.
        • et al.
        Self-managed long-term low-molecular-weight heparin therapy: the balance of benefits and harms.
        Am J Med. 2007; 120: 72-82
        • Hull R.D.
        • Pineo G.F.
        • Brant R.
        • et al.
        Home therapy of venous thrombosis with long-term LMWH versus usual care: patient satisfaction and post-thrombotic syndrome.
        Am J Med. 2009; 122: 762-769
        • Lopaciuk S.
        • Bielska-Falda H.
        • Noszczyk W.
        • et al.
        Low molecular weight heparin versus acenocoumarol in the secondary prophylaxis of deep vein thrombosis.
        Thromb Haemost. 1999; 81: 26-31
        • Lopez-Beret P.
        • Orgaz A.
        • Fontcuberta J.
        • et al.
        Low molecular weight heparin versus oral anticoagulants in the long-term treatment of deep venous thrombosis.
        J Vasc Surg. 2001; 33: 77-90
        • Meyer G.
        • Marjanovic Z.
        • Valcke J.
        • et al.
        Comparison of low-molecular-weight heparin and warfarin for the secondary prevention of venous thromboembolism in patients with cancer: a randomized controlled study.
        Arch Intern Med. 2002; 162: 1729-1735
        • Romera A.
        • Cairols M.A.
        • Vila-Coll R.
        • et al.
        A randomised open-label trial comparing long-term sub-cutaneous low-molecular-weight heparin compared with oral-anticoagulant therapy in the treatment of deep venous thrombosis.
        Eur J Vasc Endovasc Surg. 2009; 37: 349-356
        • Prandoni P.
        • Trujillo-Santos J.
        • Surico T.
        • et al.
        Recurrent thromboembolism and major bleeding during oral anticoagulant therapy in patients with solid cancer: findings from the RIETE registry.
        Haematologica. 2008; 93: 1432-1434
        • Prandoni P.
        • Lensing A.W.
        • Piccioli A.
        • et al.
        Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis.
        Blood. 2002; 100: 3484-3488
        • Beyth R.J.
        • Milligan P.E.
        • Gage B.F.
        Risk factors for bleeding in patients taking coumarins.
        Curr Hematol Rep. 2002; 1: 41-49
        • Prins M.H.
        • Lensing A.W.
        • Bauersachs R.
        • et al.
        Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN-DVT and PE randomized studies.
        Thromb J. 2013; 11: 21
        • van der Meer F.J.
        • Rosendaal F.R.
        • Vandenbroucke J.P.
        • Briet E.
        Bleeding complications in oral anticoagulant therapy. An analysis of risk factors.
        Arch Intern Med. 1993; 153: 1557-1562
        • Beyth R.J.
        • Quinn L.M.
        • Landefeld S.
        Prospective evaluation of an index for predicting the risk of major bleeding in outpatients treated with warfarin.
        Am J Med. 1998; 105: 91-99
        • Douketis J.D.
        • Arneklev K.
        • Goldhaber S.Z.
        • Spandorfer J.
        • Halperin F.
        • Horrow J.
        Comparison of bleeding in patients with nonvalvular atrial fibrillation treated with ximelagatran or warfarin: assessment of incidence, case-fatality rate, time course and sites of bleeding, and risk factors for bleeding.
        Arch Intern Med. 2006; 166: 853-859
        • Kuijer P.M.M.
        • Hutten B.A.
        • Prins M.H.
        • Buller H.R.
        Prediction of the risk of bleeding during anticoagulant treatment for venous thromboembolism.
        Arch Intern Med. 1999; 159: 457-460
        • Landefeld C.S.
        • McGuire 3rd, E.
        • Rosenblatt M.W.
        A bleeding risk index for estimating the probability of major bleeding in hospitalized patients starting anticoagulant therapy.
        Am J Med. 1990; 89: 569-578
        • Palareti G.
        • Leali N.
        • Coccheri S.
        • et al.
        Bleeding complications of oral anticoagulant treatment: An inception-cohort, prospective collaborative study (ISCOAT).
        Lancet. 1996; 348: 423-428
        • Torn M.
        • Bollen W.L.
        • van der Meer F.J.
        • van der Wall E.E.
        • Rosendaal F.R.
        Risks of oral anticoagulant therapy with increasing age.
        Arch Intern Med. 2005; 165: 1527-1532
        • White R.H.
        • Beyth R.J.
        • Zhou H.
        • Romano P.S.
        Major bleeding after hospitalization for deep-venous thrombosis.
        Am J Med. 1999; 107: 414-424
        • Olesen J.B.
        • Lip G.Y.
        • Hansen P.R.
        • et al.
        Bleeding risk in ‘real world’ patients with atrial fibrillation: comparison of two established bleeding prediction schemes in a nationwide cohort.
        J Thromb Haemost. 2011; 9: 1460-1467
        • Kooiman J.
        • van Hagen N.
        • Iglesias Del Sol A.
        • et al.
        The HAS-BLED score identifies patients with acute venous thromboembolism at high risk of major bleeding complications during the first six months of anticoagulant treatment.
        PloS One. 2015; 10: e0122520
        • Fihn S.D.
        • Callahan C.M.
        • Martin D.C.
        • McDonell M.B.
        • Henikoff J.G.
        • White R.H.
        The risk for and severity of bleeding complications in elderly patients treated with warfarin. The National Consortium of Anticoagulation Clinics.
        Ann Intern Med. 1996; 124: 970-979
        • Gage B.F.
        • Yan Y.
        • Milligan P.E.
        • et al.
        Clinical classification schemes for predicting hemorrhage: results from the National Registry of Atrial Fibrillation (NRAF).
        Am Heart J. 2006; 151: 713-719
        • Lip G.Y.
        • Frison L.
        • Halperin J.L.
        • Lane D.A.
        Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: the HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score.
        J Am Coll Cardiol. 2011; 57: 173-180
        • Nieto J.A.
        • Bruscas M.J.
        • Ruiz-Ribo D.
        • et al.
        Acute venous thromboembolism in patients with recent major bleeding. The influence of the site of bleeding and the time elapsed on outcome.
        J Thromb Haemost. 2006; 4: 2367-2372
        • Ruiz-Gimenez N.
        • Suarez C.
        • Gonzalez R.
        • et al.
        Predictive variables for major bleeding events in patients presenting with documented acute venous thromboembolism. Findings from the RIETE Registry.
        Thrombosis and haemostasis. 2008; 100: 26-31
        • van der Meer F.J.
        • Rosendaal F.R.
        • Vandenbroucke J.P.
        • Briet E.
        Assessment of a bleeding risk index in two cohorts of patients treated with oral anticoagulants.
        Thromb Haemost. 1996; 76: 12-16
        • Pengo V.
        • Legnani C.
        • Noventa F.
        • Palareti G.
        Oral anticoagulant therapy in patients with nonrheumatic atrial fibrillation and risk of bleeding. A Multicenter Inception Cohort Study.
        Thromb Haemost. 2001; 85: 418-422
        • Fang M.C.
        • Go A.S.
        • Chang Y.
        • et al.
        A new risk scheme to predict warfarin-associated hemorrhage: The ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) Study.
        J Am Coll Cardiol. 2011; 58: 395-401
        • Shireman T.I.
        • Mahnken J.D.
        • Howard P.A.
        • Kresowik T.F.
        • Hou Q.
        • Ellerbeck E.F.
        Development of a contemporary bleeding risk model for elderly warfarin recipients.
        Chest. 2006; 130: 1390-1396
        • Fihn S.D.
        • McDonell M.
        • Martin D.
        • et al.
        Risk factors for complications of chronic anticoagulation. A multicenter study. Warfarin Optimized Outpatient Follow-up Study Group.
        Ann Intern Med. 1993; 118: 511-520
        • Nieto J.A.
        • Solano R.
        • Ruiz-Ribo M.D.
        • et al.
        Fatal bleeding in patients receiving anticoagulant therapy for venous thromboembolism: findings from the RIETE registry.
        J Thromb Haemost. 2010; 8: 1216-1222
        • Hutten B.A.
        • Prins M.H.
        • Gent M.
        • Ginsberg J.
        • Tijssen J.G.
        • Buller H.R.
        Incidence of recurrent thromboembolic and bleeding complications among patients with venous thromboembolism in relation to both malignancy and achieved international normalized ratio: a retrospective analysis.
        Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2000; 18: 3078-3083
        • Jun M.
        • James M.T.
        • Manns B.J.
        • et al.
        The association between kidney function and major bleeding in older adults with atrial fibrillation starting warfarin treatment: population based observational study.
        BMJ. 2015; 350: h246
        • Hylek E.M.
        • Singer D.E.
        Risk factors for intracranial hemorrhage in outpatients taking warfarin.
        Ann Intern Med. 1994; 120: 897-902
        • Dentali F.
        • Ageno W.
        • Becattini C.
        • et al.
        Prevalence and clinical history of incidental, asymptomatic pulmonary embolism: a meta-analysis.
        Thromb Res. 2010; 125: 518-522
        • Hull R.D.
        • Raskob G.E.
        • Rosenbloom D.
        • et al.
        Heparin for 5 days as compared with 10 days in the initial treatment of proximal venous thrombosis.
        N Engl J Med. 1990; 322: 1260-1264
        • Lamberts M.
        • Lip G.Y.
        • Hansen M.L.
        • et al.
        Relation of nonsteroidal anti-inflammatory drugs to serious bleeding and thromboembolism risk in patients with atrial fibrillation receiving antithrombotic therapy: a nationwide cohort study.
        Ann Intern Med. 2014; 161: 690-698
        • Castellucci L.A.
        • Le Gal G.
        • Rodger M.A.
        • Carrier M.
        Major bleeding during secondary prevention of venous thromboembolism in patients who have completed anticoagulation: a systematic review and meta-analysis.
        J Thromb Haemost. 2014; 12: 344-348
        • Burgess S.
        • Crown N.
        • Louzada M.L.
        • Dresser G.
        • Kim R.B.
        • Lazo-Langner A.
        Clinical performance of bleeding risk scores for predicting major and clinically relevant non-major bleeding events in patients receiving warfarin.
        J Thromb Haemost. 2013; 11: 1647-1654
        • Scherz N.
        • Mean M.
        • Limacher A.
        • et al.
        Prospective, multicenter validation of prediction scores for major bleeding in elderly patients with venous thromboembolism.
        J Thromb Haemost. 2013; 11: 435-443
        • Poli D.
        • Antonucci E.
        • Testa S.
        • et al.
        The predictive ability of bleeding risk stratification models in very old patients on vitamin K antagonist treatment for venous thromboembolism: results of the prospective collaborative EPICA study.
        J Thromb Haemost. 2013; 11: 1053-1058
        • Roldan V.
        • Marin F.
        • Fernandez H.
        • et al.
        Predictive value of the HAS-BLED and ATRIA bleeding scores for the risk of serious bleeding in a “real-world” population with atrial fibrillation receiving anticoagulant therapy.
        Chest. 2013; 143: 179-184
        • Apostolakis S.
        • Lane D.A.
        • Buller H.
        • Lip G.Y.
        Comparison of the CHADS2, CHA2DS2-VASc and HAS-BLED scores for the prediction of clinically relevant bleeding in anticoagulated patients with atrial fibrillation: the AMADEUS trial.
        Thromb Haemost. 2013; 110: 1074-1079
        • Dahri K.
        • Loewen P.
        The risk of bleeding with warfarin: a systematic review and performance analysis of clinical prediction rules.
        Thromb Haemost. 2007; 98: 980-987
        • Palareti G.
        • Cosmi B.
        Bleeding with anticoagulation therapy—who is at risk, and how best to identify such patients.
        Thromb Haemost. 2009; 102: 268-278
        • Collins R.
        • MacMahon S.
        • Flather M.
        • et al.
        Clinical effects of anticoagulant therapy in suspected acute myocardial infarction: systematic overview of randomised trials.
        BMJ. 1996; 313: 652-659
        • Yusuf S.
        • Mehta S.R.
        • Xie C.
        • et al.
        Effects of reviparin, a low-molecular-weight heparin, on mortality, reinfarction, and strokes in patients with acute myocardial infarction presenting with ST-segment elevation.
        JAMA. 2005; 293: 427-435
        • Wells P.S.
        • Forgie M.A.
        • Simms M.
        • et al.
        The outpatient bleeding risk index: validation of a tool for predicting bleeding rates in patients treated for deep venous thrombosis and pulmonary embolism.
        Arch Intern Med. 2003; 163: 917-920
        • Campbell I.A.
        • Bentley D.P.
        • Prescott R.J.
        • Routledge P.A.
        • Shetty H.G.
        • Williamson I.J.
        Anticoagulation for three versus six months in patients with deep vein thrombosis or pulmonary embolism, or both: randomised trial.
        BMJ. 2007; 334: 674
        • Pinede L.
        • Ninet J.
        • Duhaut P.
        • et al.
        Comparison of 3 and 6 months of oral anticoagulant therapy after a first episode of proximal deep vein thrombosis or pulmonary embolism and comparison of 6 and 12 weeks of therapy after isolated calf deep vein thrombosis.
        Circulation. 2001; 103: 2453-2460
        • Agnelli G.
        • Prandoni P.
        • Becattini C.
        • et al.
        Extended oral anticoagulant therapy after a first episode of pulmonary embolism.
        Ann Intern Med. 2003; 139: 19-25
        • Agnelli G.
        • Prandoni P.
        • Santamaria M.G.
        • et al.
        Three months versus one year of oral anticoagulant therapy for idiopathic deep venous thrombosis. Warfarin Optimal Duration Italian Trial Investigators.
        N Engl J Med. 2001; 345: 165-169
        • Siragusa S.
        • Malato A.
        • Anastasio R.
        • et al.
        Residual vein thrombosis to establish duration of anticoagulation after a first episode of deep vein thrombosis: the Duration of Anticoagulation based on Compression UltraSonography (DACUS) study.
        Blood. 2008; 112: 511-515
        • Eischer L.
        • Gartner V.
        • Schulman S.
        • Kyrle P.A.
        • Eichinger S.
        • investigators A-F
        6 versus 30 months anticoagulation for recurrent venous thrombosis in patients with high factor VIII.
        Ann Hematol. 2009; 88: 485-490
        • Douketis J.D.
        • Gu C.S.
        • Schulman S.
        • Ghirarduzzi A.
        • Pengo V.
        • Prandoni P.
        The risk for fatal pulmonary embolism after discontinuing anticoagulant therapy for venous thromboembolism.
        Ann Intern Med. 2007; 147: 766-774
        • Watson L.
        • Broderick C.
        • Armon M.P.
        Thrombolysis for acute deep vein thrombosis.
        The Cochrane Database System Rev. 2014; 1: CD002783
        • Enden T.
        • Wik H.S.
        • Kvam A.K.
        • Haig Y.
        • Klow N.E.
        • Sandset P.M.
        Health-related quality of life after catheter-directed thrombolysis for deep vein thrombosis: secondary outcomes of the randomised, non-blinded, parallel-group CaVenT study.
        BMJ Open. 2013; 3: e002984
        • Douketis J.D.
        • Foster G.A.
        • Crowther M.A.
        • Prins M.H.
        • Ginsberg J.S.
        Clinical risk factors and timing of recurrent venous thromboembolism during the initial 3 months of anticoagulant therapy.
        Arch Intern Med. 2000; 160: 3431-3436
        • Kahn S.R.
        • Shrier I.
        • Julian J.A.
        • et al.
        Determinants and time course of the postthrombotic syndrome after acute deep venous thrombosis.
        Ann Intern Med. 2008; 149: 698-707
        • Piazza G.
        • Goldhaber S.Z.
        Fibrinolysis for acute pulmonary embolism.
        Vasc Med. 2010; 15: 419-428
        • Mehta R.H.
        • Stebbins A.
        • Lopes R.D.
        • et al.
        Race, bleeding, and outcomes in STEMI patients treated with fibrinolytic therapy.
        Am J Med. 2011; 124: 48-57
        • Todd J.L.
        • Tapson V.F.
        Thrombolytic therapy for acute pulmonary embolism: a critical appraisal.
        Chest. 2009; 135: 1321-1329
        • Brass L.M.
        • Lichtman J.H.
        • Wang Y.
        • Gurwitz J.H.
        • Radford M.J.
        • Krumholz H.M.
        Intracranial hemorrhage associated with thrombolytic therapy for elderly patients with acute myocardial infarction: results from the Cooperative Cardiovascular Project.
        Stroke. 2000; 31: 1802-1811
        • Mismetti P.
        • Laporte S.
        • Pellerin O.
        • et al.
        • and the PREPIC 2 Study Group
        Effect of a retrievable inferior vena cava filter plus anticoagulation vs anticoagulation alone on risk of recurrent pulmonary embolism: a randomized clinical trial.
        JAMA. 2015; 313: 1627-1635
        • Dong B.R.
        • Hao Q.
        • Yue J.
        • Wu T.
        • Liu G.J.
        Thrombolytic therapy for pulmonary embolism.
        Cochrane Database System Rev. 2009; : CD004437
        • Cao Y.
        • Zhao H.
        • Gao W.
        • Wang Y.
        • Cao J.
        Systematic review and meta-analysis for thrombolysis treatment in patients with acute submassive pulmonary embolism.
        Patient Prefer Adherence. 2014; 8: 275-282

      Linked Article